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Abstract 

 

Papillomaviruses (PVs) are capable of causing a broad spectrum of diseases 

with the human PVs (HPVs) being responsible for a great portion of cervical, 

anogenital and head and neck cancers worldwide. The PV oncoprotein E5 plays 

roles in host cell transformation, the PV life-cycle and viral immune evasion. 

However, the mechanisms by which E5 achieves this are unclear. A yeast two-

hybrid screen identified a novel Golgi protein, YIPF4, as a potential interactor of 

16E5. YIPF4 is a member of the integral membrane protein family YIP1 that is 

thought to mediate intracellular trafficking. Quantitative polymerase chain 

reaction, Western blot and immuno-histochemistry analysis confirmed that 

YIPF4 is expressed in host cells of HPV infection in cell culture systems and in 

clinical samples of HPV16 induced cervical lesions. This implies that YIPF4 

could be a relevant in vivo binding partner of E5. Upon the differentiation of 

HPV18 positive keratinoctyes in semisolid medium, the YIPF4 expression levels 

were stabilised compared to control cells suggesting that YIPF4 might play a 

role during the productive viral life-cycle. A differential, detergent 

permeabilisation assay provided the first experimental evidence for a three 

trans-membrane domain model of YIPF4. Co-immuno-precipitation revealed a 

conserved interaction of YIPF4 with E5 proteins from clinically important PVs 

indicating a potentially invaluable role of this complex for the virus. A flow 

cytometry approach unexpectedly revealed that neither E5 nor YIPF4 proteins 

modulate the trafficking of human leukocyte antigen class I molecules to 

facilitate viral immune evasion. A preliminary cellular interactome of YIPF4 was 

determined in a label free mass spectrometry experiment to facilitate the search 

for the function of the highly conserved E5/YIPF4 protein complex. This 

knowledge might contribute to elucidating new targets for the development of 

therapeutic agents against the broad spectrum of PV associated diseases. 
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Chapter 1. Introduction 

1.1. Family of Papillomaviruses  

The family of papillomaviruses (PV) or Papillomaviridae is one of the largest 

and evolutionarily most successful family of viruses in vertebrates (Van 

Doorslaer, 2013, Van Doorslaer et al., 2013). It could be derived from an 

ancient ancestral PV that segregated into four to six more specialised viruses 

(Bravo and Alonso, 2007, Shah et al., 2010). Due to their genetic stability, the 

evolutionary selection in PVs is slow. Co-evolution with their hosts as well as 

recombination and host-switching events during several millions of years 

resulted in highly species and tropism specific viruses (Gottschling et al., 2011). 

The PVs infect distinct niches of the epithelium of reptiles, birds and mammals 

and the infections can show no symptoms or cause a variety of disease ranging 

from warts to cancer.  

 

1.2. Classification of PVs 

The first PV was isolated by Shope from cottontail rabbits in 1933 (Shope and 

Hurst, 1933). The viral particles from skin papillomas were first visualised by 

electron microscopy 16 years later (Strauss et al., 1949). Since then a total of 

241 PV types have been discovered and new putative HPV types are identified 

frequently (Ekström et al., 2013). The classification of PVs has been a 

continuing debate over many decades (de Villiers, 2013).  

 

The classification system currently used was initiated by the Reference Centre 

for Papillomaviruses, Heidelberg, Germany (Bernard et al., 2010, de Villiers, 

2013). Its nomenclature is similar but not identical to the nomenclature used by 

the International Committee on the Taxonomy of Viruses (Fauquet et al., 2005).  

According to the currently used classification system, the 241 types of PVs form 

the Papillomaviridae, which are categorised according to sequence similarity of 

the capsid protein L1 open reading frame (ORF). The PVs of the 29 genera 
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share less than 60% sequence identity and are biologically diverse. The 170 

HPV types identified so far are members of the α-, β-, γ-, µ- and ν-genera with 

the α-HPV types being responsible for the heaviest clinical burden (Figure 1.1) 

(Bernard et al., 2010, de Villiers, 2013, de Villiers et al., 2004, Van Doorslaer, 

2013).  

 

The genera are subdivided into species that share 60% - 70% sequence 

identity. The members of a species have coherent biological properties. The 

HPV types belonging to the α-9 species, like HPV type 16 (HPV16), infect the 

mucosal epithelium and are associated with malignant lesions. These are 

therefore characterised as ‘high-risk’ HPV types. ‘Low-risk’ HPV types, like 

HPV6 and 11 of the α-10 species, only cause benign lesions in the mucosal 

epithelium. The PV types that cause lesions of the skin like HPV2 of the α-4 

species are ‘cutaneous’ HPV types.  

The PV types have to show more than 10% sequence differences to any other 

PVs to be considered a distinct PV type. A PV with only 2% - 10% sequence 

difference is called a subtype and with less than 2% sequence difference a 

variant.  

 

1.3. HPV induced diseases 

1.3.1. Cutaneous lesions 

Most of the HPV types that infect the cutaneous epithelium in humans belong to 

the β-genus of PVs but some are also classified as α-, γ-, µ-, ν-genera PVs 

(Bernard et al., 2010). They cause benign lesions like warts that are 

characterised by an increase in the horny layer (hyperkeratosis) as well as 

thickening (acanthosis) and folding (papillomatisis) throughout all layers of the 

dermis (Cubie, 2013). The common wart is mainly caused by the α-4 HPV2 and 

is remarkably persistent. The development of plantar warts or verrucas is 

induced by the µ-1 HPV1, α-4 HPV2 and the γ-1 HPV4 while flat plane warts 

predominantly originate from infections with the α-2 HPV types 3 and 10. 

Especially the deep plantar warts can be extremely painful for the patient. Up to 
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80% of cutaneous warts spontaneously resolve within 2 years (Cubie, 2013, 

Sterling et al., 2001) 

 

Epidermodysplasia verruciformis (EV) patients suffer from a rare disorder of the 

innate immune system that mediates susceptibility to β-PVs, with HPV5 and 8 

being the most prevalent HPV types. (Kiviat, 1999, Lazarczyk et al., 2009, 

Ramoz et al., 2002). EV patients develop plane warts and verrucous lesions 

with childhood onset and are likely to develop squamous cell carcinomas 

(SCCs) before the age of 40 (Sterling, 2005). EV is caused by an autosomal 

Figure 1.1 Phylogenetic tree of 170 HPV types including some animal PV types. The 

phylogenetic analysis is based on the L1 ORF. PV genera, species and types are shown. 

Animal PV types highlighted in pink belong to θ-, ε-, δ-, κ-, λ-, ξ-, π-genera, respectively. 

Adapted from de Villiers, 2013.  
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recessive mutation of the EV proteins 1 or 2 (EVER1 or EVER2) genes which 

encode trans-membrane channel-like proteins. The wildtype EVER proteins 

interact with the zinc transporter 1 (ZnT-1) and are thus responsible for zinc 

homeostasis (Lazarczyk et al., 2008). HPV16 E5 (16E5) binds EVER and ZnT-1 

and alters their function to enhance the downstream activator protein 1 

mediated expression of the HPV oncoproteins E6 and E7 (Lazarczyk et al., 

2009). The defective EVER genes in EV patients achieve similar downstream 

affects which favour the infection with β-PVs that do not encode an E5 gene.  

 

1.3.2. Benign mucosal lesions 

Mucosal infections by α-HPV types are more common than cutaneous 

infections but the majority of these do not show any symptoms (Cubie, 2013, 

Winer et al., 2005). Infections of the genital mucosa can, however, lead to the 

development of condylomata acuminate or genital warts (GWs). Ninety-seven 

per cent of GWs are caused by the low-risk HPV types 6 and 11 (Ball et al., 

2011). These evoke the characteristic acanthosis and papillomatosis resulting in 

thickening of the epithelia similar to cutaneous warts but without hyperkeratosis 

(Cubie, 2013). GWs are mainly found in the regions traumatised during sexual 

intercourse. GWs can be painful and have a great impact on health-related 

quality of life (Woodhall et al., 2008). In rare occasions vaginal warts were 

shown to obstruct the birth canal (Cubie, 2013). A third of GWs manifestations 

will spontaneously regress within four months (Yanofsky et al., 2012).  

 

HPV infections of the laryngeal mucosa can lead in rare occasions to recurrent 

respiratory papillomatosis (RRP). The majority (92%) of RRP is associated with 

the low-risk HPV types 6 and 11 (Abramson et al., 1987). The disease is 

characterised by exophytic warty lesions in the laryngeal area, which are 

usually benign but recur after surgical removal. The symptoms range from 

hoarseness or stridor to obstruction of the airways depending on disease 

severity (Gillison et al., 2012). In 1.6% of patients the benign lesions progress 

into cancer (Dedo and Yu, 2001), however, in HPV11 positive RRP with 

pulmonary involvement the malignant conversion rate can be as high as 80% 

(Gerein et al., 2005).  
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1.3.3. Malignant mucosal lesions  

High-risk HPV types cause malignant mucosal lesions in several anogenital 

sites like the uterine cervix (cervix), penis, vulva, vagina, anus and in the head 

and neck area (Figure 1.2) (Bouvard et al., 2009).  

 

Cervical cancer is the most studied HPV related cancer to date. Professor 

Harald zur Hausen was awarded the Nobel Prize in Physiology or Medicine in 

2008 for the discovery of the association between HPV and cervical cancer.  

Twelve high-risk HPV types are associated with this type of cancer namely 

HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59 (Bouvard et al., 2009). 

HPV16 and HPV18 alone account for 70% - 76% of cervical cancer cases 

worldwide (de Sanjose et al., 2007, Li et al., 2011). There is limited evidence for 

a further 8 HPV types (26, 53, 66, 67, 68, 70, 73, 82) to be the causative agents 

of cervical cancer (Bouvard et al., 2009).  

 

The majority of cervical cancers arise in the transformation zone of the cervix 

and are SCCs (80% - 90%). The remaining cervical cancer cases are 

adenocarcinomas (Cubie, 2013). However, 50% of the initial HPV infections 

spontaneously resolve within 6 months and ~90% of infections clear within a 

few years (Rodriguez et al., 2010, Winer et al., 2011).  

 

Persistent HPV infections can progress into precancerous lesions called 

cervical intraepithelial neoplasia (CIN) (Cubie, 2013). These do not cause any 

apparent symptoms. Characteristic histological features of CINs are highly 

vacuolated cells with hyperchromatic nuclei, the koilocytes. The CIN lesions are 

graded. CIN1 lesions contain 1/3 abnormal cells, CIN2 lesions feature 2/3 cells 

with abnormalities and in CIN3 lesions all cells are highly abnormal. Further 

viral persistence can lead to invasive cancer.  
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It was initially believed that the integration of the viral DNA into the host genome 

is crucial for the progression into invasive cancer (Corden et al., 1999, Cullen et 

al., 1991). However, several invasive cancer samples only contain episomal 

HPV genomes which challenges this episteme of cervical cancer aetiology 

(Badaracco et al., 2002).  

 

Early stage SCCs are mostly asymptomatic while pelvic pain, vaginal bleeding 

and discharge as well as pain during intercourse can be symptoms of later 

stage SCCs. Co-factors for the progression into cervical cancer are long-term 

use of oral contraceptives, smoking, co-infections with human 

immunodeficiency virus (HIV) and multiparity (Moscicki et al., 2012).  

 

HPVs are also associated with carcinoma of the penis with 90% of in situ penile 

carcinomas and 52% of invasive penile carcinomas being positive for HPV 

(Krustrup et al., 2009). This illustrates that HPV prevalence differs amongst 

carcinoma subtypes, e.g. 82% of warty-basaloid cancers are HPV positive while 

no association has been observed with verrucous penile carcinomas (Chaux 

Figure 1.2 Distribution and incidences of cancers associated with HPV in the USA. The HPV 

associated cancer cases (red) are contrasted with HPV-unrelated cancer cases (black). The 

approximate percentage of cancers attributable to the most common HPV types 16 and 18 is 

shown on the right. Adapted from Lowy and Schiller, 2012.  
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and Cubilla, 2012). HPV16 is found in 91% of high-risk HPV induced 

carcinomas (Krustrup et al., 2009). The patient might present with discharge or 

bleeding, flat brown-blue growths, warty papules or red rashes which are 

usually painless (Cubie, 2013). Pre-cancerous lesions defined as penile 

intraepithelial neoplasia (PIN) precede the development into cancer. Also, 

certain risk factors for cancerous progression have been identified like lack of 

condom use, not being circumcised, number of lifetime sexual partners and 

smoking (Moscicki et al., 2012).The natural history of HPV infections in men is, 

however, largely unknown and urgently needs further investigations (Hartwig et 

al., 2012).  

 

HPV also causes less common forms of anogenital cancer. Four per cent of 

gynaecological cancers worldwide are carcinomas of the vulva (Castellsagué et 

al., 2013). This rare cancer is attributable to HPV (43%) with HPV16 being the 

most prevalent HPV type (Lowy and Schiller, 2012, Rumbold et al., 2012). The 

majority of vaginal (70%) and anal (92%) cancers are also associated with HPV 

(Ouhoummane et al., 2013, Stern et al., 2012). In 90% of anal cancer samples 

high-risk HPV16 was identified as the causative agent.  

 

A remarkable 72% of oropharyngeal SCCs (OSCCs) can be associated with 

HPV in the USA (Chaturvedi et al., 2011, Mehanna et al., 2013) but as for 

penile cancer, the prevalence of HPV in head and neck SCCs (HNSCCs) is 

subtype specific. Worldwide, 36% of OSCCs is HPV positive while only 24% of 

oral SCCs and 24% of laryngeal SCCs are attributable to HPV (Kreimer et al., 

2005). The great majority (~90%) of HPV associated HNSCC is caused by 

HPV16. The viral DNA is often but not always integrated into the host genome 

(Lace et al., 2011). Co-factors for the development of HNSCC could be alcohol, 

smoking, genetic variations as well as diet and nutrition and dental hygiene 

(Gillison et al., 2012). Notably, patients with HPV positive HNSCC have a 28% 

reduced risk of death compared to HPV negative HNSCC patients (Ragin and 

Taioli, 2007).  
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1.3.4. BPV induced pathology 

To date, 10 bovine PV (BPV) types have been identified and classified amongst 

the δ-, ε-, ξ-genera of PVs (Bernard et al., 2010). The BPV types 1 and 2 form 

an exception to the epithelia tropism and species specificity of the 

Papillomaviridae. They are the only known PVs that also infect the fibroblasts in 

the dermis and are not confined to the infection of cattle but cross-species 

infection of horses and other ungulates has been described (Shafti-Keramat et 

al., 2009). Their pathology is diverse with tumour formation being observed in 

the genital and paragenital area and the skin, but also the eye, upper 

gastrointestinal tracts and the urinary bladder (Roperto et al., 2010). The 

formation of urinary bladder and lower gastrointestinal carcinomas correlates 

with the ingestion of bracken-fern (Nasir and Campo, 2008). BPV1 and BPV2 

are associated with the formation of urinary bladder cancer while BPV4 is 

predominant causative agent of gastrointestinal carcinomas.  
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1.3.5. Epidemiology of malignant HPV associated lesions 

HPV associated cancers have a high impact on the world population. The 

probability of a woman acquiring a HPV infection during her life is remarkably 

high, at 80% - 90% (Bosch et al., 2012), however, the HPV prevalence differs 

greatly amongst populations. In Africa, Central America and Mexico it is 

estimated to be ≥20% while in Europe and Asia only 8% of women are 

assumed to be HPV infected (de Sanjose et al., 2007). This puts more than 2 

billion women worldwide older than 15 years at risk of developing cervical 

cancer. Interestingly, the prevalence of high-risk HPV types does not vary 

greatly between regions of the world. Fifty-four per cent of invasive cervical 

cancers are caused by HPV16 and 16.5% by HPV18. 

 

Cervical cancer is the second most common cancer in women worldwide with 

86% of cases occurring in developing countries (Figure 1.3, Table 1.1) (WHO 

and ICO, 2010). Almost half of the patients die from the disease. Until the year 

2030, a worldwide 2% increase in incidence of cervical cancers is predicted, 

which is in balance with the rate of decline (Forman et al., 2012). 

  

Figure 1.3 Age standardised rate of cervical cancer worldwide. Age standardised rates 

(ARS) indicated are per 100, 000 women per year. The heavieast burden of cervical cancer 

is carried by developing countries. Adapted from WHO and ICO, 2010.  
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Table 1.1 Extent of HPV associated cancers worldwide (rounded numbers), in the UK and 

Yorkshire and the North (Castellsagué et al., 2013, de Sanjose et al., 2007, WHO and ICO, 

2010).  

type of cancer 
annual cases 

worldwide 

cases in the 

UK, 

1998 - 2002 

cases in 

Yorkshire and 

the North, 

1998 - 2002 

age group 

mostly affected 

[years] 

cervical 530,000 14,393 2081 <35; >45 

head and neck 400,000 4,705 583 n/s 

vulva 27,000 4,812 637 n/s 

anal 27,000 1,449 205 n/s 

penile 22,000 1,916 256 50 - 70 

vagina 13,000 1,041 137 n/s 

n/s = not stated 

 

HPV associated cancers of the penis are rare and account for 0.5% of cancers 

in men (Castellsagué et al., 2013, WHO and ICO, 2010). Incidences rates 

correlate with cervical cancer and are higher in Latin America, India and 

Thailand than in Western countries (Castellsagué et al., 2013, de Martel et al., 

2012). Cancer of the vulva is another rare form of HPV related cancer with 

~60% of vulva cancers occurring in developed countries (WHO and ICO, 2010). 

HPV induced cancer of the vagina accounts for 2% of all gynaecological 

cancers worldwide with 68% cent of them occurring in developing countries. 

HPV positive cancer of the anus is more common in women than in men but it is 

especially high in women with cervical or vulva cancer, men who have sex with 

men and immunosuppressed populations including HIV infected people 

(Castellsagué et al., 2013).  

 

The number of HPV related OSCC is on the rise with 72% of them being 

positive for HPV today compared to only 16% in the 1980 (Chaturvedi et al., 

2011, Mehanna et al., 2013). According to estimates, in 2020 the number of 

HPV positive OSCCs will exceed the numbers of HPV-related cervical cancers. 

This dramatic rise in HPV positive OSCCs was described as a cancer epidemic 

(Marur et al., 2010).  
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1.3.6. Transmission 

HPVs are generally transmitted by contact with a contaminated person or object 

and facilitated by minor injuries to the epidermis of the recipient.  

Cutaneous warts in childhood are easily spread because person to person 

contact is frequent as well as suckling on contaminated surfaces like fingers is 

common (Cubie, 2013).  

Mucosal HPV types can be spread horizontally by sexual and non-sexual 

contact as well as vertically by mother to infant contact.  

The primary route of mucosal HPV transmission is either direct or indirect 

sexual contact where skin to skin contact is more crucial than penetration 

(Stanley, 2010). Oral sex and potentially open mouth kissing can also facilitate 

the spread of HPV (D'Souza and Dempsey, 2011) although the latter is 

controversial (Meyer et al., 2013).  

The transmission of HPV frequently occurs via autoinoculation. The same HPV 

types were identified on hands and fingers of patients with genital HPV which 

can promote the infection of other mucosal sites of their bodies (Winer et al., 

2010). 

The vertical transmission rate from mother to infant is approximately 20% - 30% 

(Castellsague et al., 2009, Erickson et al., 2013, Rombaldi et al., 2008, 

Rombaldi et al., 2009). The virus can be spread via the placenta, amniotic fluid 

or during delivery. The great majority (up to 100%) of infant HPV infections are 

cleared within the first year of life and the juvenile onset of RRP and GWs is 

rare (Obalek et al., 1990, Silverberg et al., 2003). 

 

1.3.7. HPV and the immune system 

The virus-host co-evolution selected for a diverse range of HPV immune 

evasion strategies (Amador-Molina et al., 2013). The HPV life-cycle which is 

confined to the epithelial layers (1.4.2) minimises the exposure to cells of the 

innate immune system (Stanley, 2012). The release of new virus particles 

coincides with the natural death of the differentiated keratinocyte and cytolysis 

and the subsequent initiation of the inflammatory response is avoided. This type 
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of viral life-cycle bypasses a viraemia which exacerbates detection by the host’s 

immune system.  

The viral proteins are encoded with suboptimal codons for the expression in 

mammalian host cells. This hampers their expression and keeps the viral 

protein expression low to further evade recognition by the host’s T cells 

(Kanodia et al., 2007, Liu et al., 2002, Zhao et al., 2005). High levels of viral 

proteins are only expressed in the upper layers of the stratified epithelium which 

approach terminal differentiation (Middleton et al., 2003, Stanley, 1994, Sterling 

et al., 1993). 

 

Despite its hidden life-cycle, HPV employs further strategies to evade the 

immune system. The viral oncoproteins E5 and E7 actively down-regulate the 

cell surface expression of human leukocyte antigen (HLA) class I and II as well 

as CD1d (Ashrafi et al., 2006a, Bottley et al., 2008, Miura et al., 2010, Zhang et 

al., 2003) to avoid recognition by T cells. The E5 mediated down-regulation of 

HLA class I molecules is common to all tested PV types so far (Ashrafi et al., 

2006a). 

High-risk HPV types down-regulate a wide array of pro-inflammatory cytokines 

(Amador-Molina et al., 2013, Karim et al., 2011). Especially E6 and E7 actively 

inhibit the interferon (IFN) signalling pathways to escape from innate immunity 

(Barnard and McMillan, 1999, Ronco et al., 1998).  

 

In the majority of cases the immune system eventually clears the HPV 

infections. In GWs and CIN1 lesions this is achieved by infiltration of both CD4+ 

and CD8+ T cells and macrophages into the infected epithelium which promote 

clearance by the expression of pro-inflammatory cytokines (Coleman et al., 

1994). This cell-mediated immune response is predominantly directed against 

the E2 and E6 proteins (de Jong et al., 2002, Welters et al., 2003). 

 

The adaptive immune response supports HPV clearance although 

seroconversion is only observed in 60% - 69% of women depending on the 

HPV type (Carter et al., 2000). The generation of antibodies specific to the 

major viral capsid protein L1 in HPV16 positive patients can require 6 – 12 

months. In HNSCCs antibodies to HPV16 E6 and E7 can be detected in ~20% 
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of patients (Smith et al., 2007). High antibody levels against HPV16 and 18 

protect from reinfection or reactivation (Safaeian et al., 2010). This was 

exploited for the development of prophylactic vaccines (1.3.8).  

 

1.3.8. Prevention and treatment of HPV induced lesions 

There are two prophylactic vaccines available to prevent infection from the most 

common mucosal HPV types. Cervarix (GlaxoSmithKline Biologicals) is a 

bivalent virus-like particle (VLP) vaccine against the most frequent high-risk 

HPV types 16 and 18 while Gardasil (Merck) is a quadrivalent VLP vaccine 

against the high-risk HPV types 16 and 18 and the low-risk HPV types 6 and 11. 

Both vaccines are highly effective against infections with the targeted HPV 

types and additional cross protection against other HPV types (Cervarix: 

HPV31, 33, 45, Gardasil: HPV31) was observed (De Vincenzo et al., 2013, 

Kjaer et al., 2009, Paavonen et al., 2009). Their safety profile as well as 

immunogenicity and long-term protection are excellent (Bosch et al., 2012, 

Denny, 2013, Schiller et al., 2012). When sufficient vaccination levels are 

achieved globally, 70% of cervical cancers can be prevented (Bosch et al., 

2012).  

In the UK, girls between 12 – 13 years of age are vaccinated through secondary 

school vaccination programmes with the quadrivalent vaccine. This national 

vaccination schedule is highly effective and some herd-immunity is provided 

(Mesher et al., 2013). Vaccination of boys is effective but currently not part of 

the UK vaccination schedule (Castellsagué et al., 2013, Schiller et al., 2012). 

 

Limitations to the vaccines include (i) lack of therapeutic effect (ii) targeting of 

few HPV types only (iii) high cost and therefore not accessible to everyone, 

which make further preventative measures necessary.  

A cervical screening programme was launched in the UK in 1988 with great 

success. Women between the ages of 25 – 64 years are recruited once every 3 

years and potentially 80% of cervical cancer related deaths were prevented this 

way (Peto et al., 2004). In 2008, screening coverage was 69% UK-wide. 

Yorkshire and the Humber achieved 80% screening coverage between 2006 

and 2007.   
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Screening assays comprise the cytology-based Pap smear and liquid-based 

cytology assays, which detect microscopic abnormalities in exfoliated patient 

cells. These can be visualised with acetic acid or Iodine solution during a 

colposcopy examination of the patient’s cervix. Biopsies of the affected areas 

can be tested for HPV DNA or messenger RNA (mRNA). To date more than 

125 commercial HPV DNA tests are available, including self-sampling home 

tests (Poljak et al., 2012, Seiwert, 2013). However, the clinical performances of 

the majority of the HPV DNA tests are not standardised which might cause bias 

in the correct diagnosis.  

Notably, all the screening tools in place are focused on the prevention of 

cervical cancer only. No nationwide screening schedule for the remaining HPV 

associated cancers (Table 1.1) exists.  

 

Treatment options for CIN lesions are curing the symptom rather than the 

causative HPV infection due to the lack of HPV specific antivirals. Various 

methods of surgical removal of the affected area are employed (loop 

electrosurgical excision procedure, cold knife cone biopsy, electrofulgaration, 

cold-coagulation, cryotherapy) (Stern et al., 2012). Advanced cervical cancer is 

treated with hysterectomy and chemoradiotherapy. The treatment of other HPV 

induced anogenital cancers and HNSCCs is confined to surgery and 

chemotherapy and radiotherapy (Stern et al., 2012). GWs are successfully 

treated by topical application of the immune modifier imiquimod or the 

cytomegalovirus (CMV) antiviral cidofovir. Also cutaneous warts are treated with 

the topical application of salicyl acid but cryotherapy is also commonly 

employed (Sterling et al., 2001). 

 

Overall, effective prevention and treatment options only exist for HPV induced 

cervical cancers in developed countries. Global and national managing of the 

significant incidences of other HPV related cancers is poor. Further effort has to 

be spent on expansion of health care systems and basic research to 

successfully prevent a greater number of HPV related cancers.   
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1.4. PV virology 

1.4.1. PV genome organisation 

PVs are non-enveloped DNA viruses with a double-stranded and circular 

genome of approximately 8000 bps (Figure 1.4) (Zheng and Baker, 2006). It 

encodes for the core proteins E1, E2, L1 and L2 and the oncoproteins E5, E6 

and E7 that have been gained and lost during evolution and are therefore not 

encoded by all PV types (Van Doorslaer, 2013). The genome is packaged in an 

icosahedral capsid of 60 nm in diameter, which consists of major, L1, and 

minor, L2, structural proteins (Buck et al., 2008, Finnen et al., 2003). 

 

The compact genome is organised into three main regions. The early region 

comprises 50% of the viral genome and encodes the ORFs of the six early (E) 

proteins E1, E2, E4, E5, E6 and E7 (Zheng and Baker, 2006). An E8 ORF is 

also encoded in BPV, HPV31 and several rabbit PVs (Han et al., 1998, 

Stubenrauch et al., 2001, Tomita et al., 2007). The late region is located down-

stream of the early region and constitutes 40% of the PV genome (Zheng and 

Baker, 2006). It encodes for the late (L) proteins L1 and L2. The remaining 10% 

of the PV genome is designated the long control region (LCR; also upstream 

regulatory region) which contains the origin of replication (ori). PVs possess two 

main promoters. In the HPV16 genome the early promoter, P97, is situated 

upstream of the E6 ORF and facilitates expression of the early genes (Zheng 

and Baker, 2006). The late promoter, P670, is localised in the E7 ORF and is 

active during the productive phase of the viral life-cycle (Grassmann et al., 

1996).  

 

PVs employ a variety of transcriptional and post-transcriptional regulation 

mechanisms to coordinate viral gene expression during the complex life-cycle 

(Bernard, 2013, Johannsen and Lambert, 2013, Schwartz, 2013). The 

transcription from the PV genome can be regulated by viral DNA methylation. 

Also, alternative splicing and polyadenylation of various polycistronic mRNAs 

regulates the timely expression of viral proteins. The translation efficiency of the 

RNA is intentionally limited by use of rare codons (1.3.7).   
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Figure 1.4 Genome organisation of HPV16. The 7904 bps of the genome are organised into 

three regions: early region (red and green), late region (orange) and the LCR. HPV 

oncoproteins are depicted in red. A simplified LCR is illustrated showing the binding sites of 

the viral proteins E1 and E2 and of cellular transcription factors (SP1) only. PE = P97, PL = 

P670, PAE = early polyadenylation site, PAL = late polyadenylation site. Adapted from 

Doorbar et al., 2012. 
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1.4.2. PV life-cycle  

The life-cycle of PVs completely depends on the differentiation of the epithelial 

keratinocytes they infect. Its completion takes approximately three weeks 

(Stanley, 2006). This is the same time that basal keratinocytes require for 

complete differentiation. The life-cycle of HPV16 is relatively well understood for 

cervical tissue (Doorbar, 2006) but less so for other sites of infection and other 

PV types, respectively (Doorbar et al., 2012).  

 

1.4.2.1. Attachment and entry  

PVs infect mitotically active basal stem cells of the epithelium (Pyeon et al., 

2009b). Access to these cells is facilitated by epithelial wounding or micro-

wounding and first requires binding of L1 to heparan sulphate proteoglycans 

and possibly laminin at the basal membrane (Richards et al., 2013, Schiller et 

al., 2010). The conformation of the viral capsid changes and exposes the 

amino-terminus (N-terminus) of L2 for furin cleavage (Richards et al., 2006). 

Cleavage exposes a segment of L1 that interacts with an unidentified cell 

surface receptor (Schiller et al., 2010). The endocytic uptake is facilitated by the 

tetraspanin CD151 and the integrins α3β1 and α6β1/4 (Scheffer et al., 2013). 

The virus is uncoated in late endosomes and the major capsid protein L1 is 

degraded. A complex of L2 and the PV genome escapes the endocytic 

pathway, enters the nucleus and localises to nuclear domain 10 bodies as 

episomes (Bergant Marusic et al., 2012, Day et al., 2004). With 12 – 24 h until 

first transcription from the PV genome, the attachment and entry phase of the 

PV life-cycle is remarkably slow (Day et al., 2003, Schiller et al., 2010).  

In accordance with the diversity of PVs, multiple mechanisms for entry into the 

cell have been described for different PV types (Bousarghin et al., 2003, Day et 

al., 2003, Hindmarsh and Laimins, 2007, Schelhaas et al., 2012, Smith et al., 

2008).  
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1.4.2.2. Initial genome amplification and subsequent genome maintenance  

The PVs replication and virion assembly (1.4.2.4) is completely confined to the 

nucleus (Doorbar et al., 2012). Upon entry into the keratinocyte nucleus, the PV 

genome is rapidly amplified to an estimated 100 - 200 copies/cell (Figure 1.5). 

The viral E2 protein binds to the E2 binding sites (E2BS) in the LCR and 

recruits the viral helicase E1 to the ori to achieve the amplification. After this 

initial amplification phase, the viral episome replication is maintained without the 

contribution of the viral E1 protein (Egawa et al., 2012). Only the viral E2 protein 

with some of its cellular interaction partners tethers the episomes to the host’s 

chromatin to ensure retention and equal partitioning during cell division (Dao et 

al., 2006, McBride et al., 2006, Parish et al., 2006, Van Tine et al., 2004).  

High-risk HPV types are thought to drive these basal and parabasal 

keratinocytes into cell proliferation by expression of their potent E6 and E7 

oncoproteins (Doorbar, 2006). The low-risk types with less potent E6 and E7 

proteins are most likely dependent on the wound healing response to the micro-

wound (1.4.2.1) to facilitate proliferation of these cells (Doorbar, 2006, Schiller 

et al., 2010, Valencia et al., 2008). The proliferation of the infected cell(s) not 

only helps to spread the viral infection in the proximal tissue but is also 

necessary for completion of the viral life-cycle (1.4.2.3).  

 

1.4.2.3. Productive phase of the viral life-cycle  

In uninfected epithelium only the basal stem cells are capable of DNA synthesis 

and mitosis (Fuchs, 1990). Upon cell division the daughter cells migrate towards 

the epithelial surface and undergo a differentiation process that involves 

biochemical and morphological changes resulting in dead and superficial cells 

that are sloughed from the surface eventually.  

Initially, the basal daughter cells enter the suprabasal layer, which is comprised 

of mitotically inactive but metabolically active cells. These express keratins that 

contribute to the formation of cytoskeletal filaments as well as the envelope 

protein involucrin. In the overlying granular layer, expression of keratins 

discontinues but the production of filaggrin supports the bundling of the keratin 

filaments into larger fibres. The influx of calcium into these permeable cells 
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activates transglutaminase, which links the envelope proteins to a cage-like 

structure. This results in the terminally differentiated cells of the overlying 

cornified layer. These cells completely abandon metabolic activity and consist of 

dead cage-like structures filled with keratin fibres.  

 

The PV life-cycle, however, depends on the cellular replication machinery in the 

suprabasal layer of the epithelium. Therefore, PVs uncouple the differentiation 

process from the DNA replication process in these cells which is characterised 

by the simultaneous expression of differentiation markers like keratins and cell 

cycle entry markers including cyclin A (Doorbar et al., 2012).  

The expression of the viral proteins E6 and E7 facilitates re-entry into the cell 

cycle by interacting with tumour suppressor proteins. E7 causes degradation of 

members of the retinoblastoma-associated protein (pRB) family and E6 proteins 

mediate inactivation of p53 (Doorbar et al., 2012). Different properties of high-

risk and low-risk oncoproteins might explain distinct pathologies caused by 

high-risk and low-risk HPV types.  

The expression of the E5 oncoprotein modifies the cellular environment to 

facilitate cell cycle re-entry and subsequent viral genome amplification (1.6.2). 

Also the E4 protein is thought to contribute indirectly to viral genome 

amplification and cell cycle re-entry (Peh et al., 2004, Wilson et al., 2005, 

Wilson et al., 2007).  

The progressing differentiation of the host cells initiates transcription from the 

late viral promoter with increased expression of the viral replication proteins E1 

and E2. This results in a ~2 log increase in episomal copy number that is 

primarily achieved when suprabasal cells move towards a G2-like phase of the 

cell cycle (Banerjee et al., 2011, Doorbar et al., 2012, Maglennon et al., 2011, 

Wang et al., 2009). 

 

1.4.2.4. Virus assembly and release  

The emergence of new infectious virions requires packaging of the newly 

amplified PV genomes (1.4.2.3). The E2 protein promotes the expression of the 

necessary structural proteins L1 and L2 from the late viral promoter by use of 

alternative splicing sites and the late polyandenylation signal (Doorbar et al., 
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2012, Johansson et al., 2012). The E2 protein recruits the viral genomes to the 

sites of assembly which is directed by the minor capsid protein L2 (Day et al., 

1998). The genome is encapsidated and new virions emerge.  

The viral E4 protein accumulates in cells that are undergoing virus synthesis 

and assembles into amyloid fibres (Doorbar et al., 1997, Doorbar et al., 2012, 

McIntosh et al., 2008). These rupture the cage-like structures filled with keratin 

fibres of the cornified cells and thus enable release of the virions (Doorbar et al., 

1991, Doorbar et al., 2012, Wang et al., 2004).  

 

1.4.2.5. Deregulation of the HPV life-cycle in carcinogenesis 

The increasing severity of cervical neoplasia and progression into cancer 

correlates with the de-regulated expression of the viral oncoproteins E6 and E7 

(Doorbar et al., 2012). This could be caused by epigenetic modifications since 

the LCR is distinctly methylated in the HPV induced lesions (Ding et al., 2009, 

Doorbar et al., 2012, van Kempen et al., 2013). Also, the hormone oestrogen 

plays a role in the progression into cancer as the LCR region comprises 

hormone response elements (Arbeit et al., 1996, Gariglio et al., 2009).  

These elevated levels of the oncoproteins E6 and E7 induce aneuploidisation 

and chromosomal instability which are necessary for progression into cancer 

(Melsheimer et al., 2004). The genomic instability promotes integration of the 

viral episome into the host genome at common fragile sites (Dall et al., 2008, 

Thorland et al., 2003, Wilting et al., 2009). This is observed for up to 90% of 

cervical cancers (Pett and Coleman, 2007, Yu et al., 2005). Integration usually 

retains the LCR and the ORFs for the oncoproteins E6 and E7 while the ORFs 

for the regulatory proteins E1, E2 as wells as E4, E5 and L2 are disrupted or 

lost (Choo et al., 1987, Doorbar, 2006). Since the E2 protein can act as 

transcriptional repressor for E6 and E7, its loss during integration promotes 

transcriptions of these oncogenes (Thierry, 2009). However, 30% of HPV16 

positive cancer contain episomal genomes only, thus, the integration is not the 

sole crucial factor for progression to cancer but rather the persistent expression 

of the viral oncoproteins E6 and E7 (Doorbar et al., 2012). 
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Figure 1.5 Schematic drawing of the PV life-cycle. The differential expression of the viral proteins is shown in context of the epidermal layers. For a 

description of the viral proteins see main text (1.5 and 1.6). Some of the functions of E5 are indicated on the right. Adapted from Venuti et al., 2011 
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1.5. PV proteins 

1.5.1. E1 regulatory protein 

The PV E1 protein is a homo-hexameric DNA helicase of the superfamily III 

(Hickman and Dyda, 2005, Singleton et al., 2007). It is the most conserved and 

the only protein with enzymatic function encoded by PVs (Bergvall et al., 2013). 

The E1 proteins are unstable proteins that are degraded by the ubiquitin-

proteasome pathway (Malcles et al., 2002). They range in size between 600 – 

650 amino acids and are highly post-translationally modified by 

phosphorylation, caspase cleavage and sumoylation to regulate E1 function, 

although the role of sumoylation is not understood yet (Bergvall et al., 2013).  

 

The E1 protein is comprised of three functional sections. The regulatory domain 

at the N-terminus contains motifs that mediate the nuclear import/export of the 

protein. The adjacent DNA-binding domain (DBD) recognises the viral ori and 

binds it via its DNA-binding loop and DNA-binding helix (Enemark et al., 2000). 

The DBD also mediates dimerisation of E1 proteins as well as interaction with 

replication factors of the host. The carboxyl-terminus (C-terminus) comprises 

the helicase domain, which contains three functional subdomains. The 

oligomerisation domain facilitates the formation of a homo-hexamer (Titolo et 

al., 2000). The adenosine triphosphate (ATP) binding domain binds and 

hydrolyses ATP to provide energy for the DNA unwinding while the most C-

terminal brace domain promotes the stability of the homo-hexamer during this 

process (Whelan et al., 2012). 

 

The E1 helicase is responsible for establishing a sufficient viral genome copy 

number upon cell infection and to promote genome amplification during the 

productive viral life-cycle (Bergvall et al., 2013). It is controversial whether E1 is 

also required for maintenance of the viral copy number in undifferentiated cells 

(Egawa et al., 2012). In undifferentiated cells, E1 establishes a bi-directional 

replication fork while in differentiating cells during the productive phase of the 

viral life-cycle, it employs a rolling-circle mechanism for viral replication (Flores 
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and Lambert, 1997). Cleavage of the N-terminal region of E1 by caspases 

promotes this amplification phase of the viral genome (Moody et al., 2007).  

The E1 dependent viral genome replication is regulated by shuttling the protein 

between the nucleus and the cytoplasm. The nuclear import is facilitated by 

importins that bind to the nuclear localisation signal (NLS) at the N-terminus of 

E1 (Bian et al., 2007). Phosphorylation at the NLS disrupts the association with 

importins and prevents nuclear import and the subsequent replication. However, 

the phosphorylation by mitogen-activated protein (MAP) kinases can also 

promote the import into the nucleus and stimulate viral DNA replication (Yu et 

al., 2007).  

The nuclear export of E1 is mediated by binding of Crm-1 exportin to the 

nuclear export signal (NES) at its N-terminus (Deng et al., 2004). This can be 

inhibited by cyclin-dependent kinase 2 (CDK) induced phosphorylation. In 

contrast, phosphorylation of BPV1 E1 by CDK2 can promote the export from the 

nucleus (Hsu et al., 2007) and E1 phosphorylation may also reduce its 

sequence-specific DNA binding activity resulting in discontinuing of replication 

(Schuck et al., 2013).  

 

The viral ori comprises a palindromic E1 binding region, two to three E2 binding 

regions and an AT-rich region (Figure 1.4) (Bergvall et al., 2013, Lee et al., 

1997, Sun et al., 1996, Titolo et al., 2003). These elements allow the correct 

assembly of the double-hexameric E1 conformation required for viral genome 

replication via intermediate protein complexes. First, the E2 protein recruits E1 

to the ori and forms an E1-E2-ori ternary complex (Bergvall et al., 2013, 

Sanders and Stenlund, 2001, Stenlund, 2003). This complex is converted into 

an E1 double-trimer in head-to-head configuration (Enemark et al., 2000, 

Enemark et al., 2002, Sedman and Stenlund, 1996) which melts the DNA at the 

ori requiring ATP hydrolysis (Schuck and Stenlund, 2005, Schuck and Stenlund, 

2011). The single DNA strands allow for the formation of two E1 hexamers each 

encircling one DNA strand which then moves in 3' to 5' direction to unwind the 

DNA further. The viral DNA is replicated by utilising the cellular replication 

machinery that is recruited by E1 like the polymerase α-primase complex (Park 

et al., 1994), the replication protein A (Han et al., 1999) and the topoisomerase I 

(Clower et al., 2006).   
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1.5.2. E2 regulatory protein 

The E2 protein is an essential regulatory protein of PVs and is therefore 

encoded by all known PV types (McBride, 2013, Van Doorslaer, 2013). They 

form stable homo-dimers (McBride et al., 1989) with the monomer of HPV16 

comprising 365 amino acids. E2 proteins are localised in the nucleus but not the 

nucleolus of the host cell (Zou et al., 2000). This is mediated by importin 

molecules (Bian and Wilson, 2010) which recognise its NLS (Klucevsek et al., 

2007). Also, acetylation of E2 promotes the localisation in the nucleus (Quinlan 

et al., 2013). The half-life of E2 proteins is very short (Hubbert et al., 1988) but 

protein stability is regulated by phosphorylation and sumoylation (Penrose et al., 

2004, Sekhar and McBride, 2012, Wu et al., 2009). 

 

There are three domains in the E2 proteins. The N-terminal transactivation 

domain (TAD) contains approximately 200 amino acids and is highly conserved 

(McBride, 2013). It plays important roles in viral genome replication and the 

activation or repression of viral transcription. It can also self-interact and 

promote dimer formation (Antson et al., 2000).  

The C-terminal domain is the DBD and dimerisation domain which comprises 

approximately 85 – 100 amino acids (McBride, 2013). It binds to consensus 

motifs (ACCN6GGT) on the DNA (Androphy et al., 1987b) and plays the main 

role in dimerisation of the protein (McBride et al., 1989).  

The TAD and DBD are linked by a hinge region (Gauthier et al., 1991). This is 

an unstructured, not well conserved domain that varies in length (McBride et al., 

1989). It prevents steric hindrance between the TAD and DBD (Winokur and 

McBride, 1992). In α-PVs a motif in this region also promotes nuclear 

localisation and association of E2 with the nuclear matrix (Zou et al., 2000).  

 

The E2 ORF is expressed from the early and late promoter of PVs during their 

life-cycle (Burnett et al., 1990, Johansson and Schwartz, 2013). E2 expression 

levels accomplished by transcription from the late promoter are higher since E2 

is required for the productive phase of the viral life-cycle (Ozbun and Meyers, 

1998).  
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The E2 proteins exert their various roles by interacting with viral and cellular 

proteins (McBride, 2013). The interaction of E2 with the viral protein L2 

facilitates the establishment of the viral genome upon infection (Day et al., 

2004, Day et al., 1998). E2 also loads the viral helicase E1 onto the ori to 

promote genome replication. E2 functions as the main transcriptional regulator 

of the viral ORFs (Chin et al., 1988) by recruiting cellular proteins that activate 

or repress their transcription. Whether E2 activates or represses transcription 

depends on its concentration within the cell (Bouvard et al., 1994b).  

During mitosis, E2 tethers the viral genomes to the host chromosomes to 

ensure equal partitioning amongst the daughter cells (Bastien and McBride, 

2000). For this, the E2 DBD binds to the consensus DNA sequence on the viral 

genome and its TAD mediates binding to the host chromosome by interacting 

with cellular proteins like bromodomain-containing protein 4 (Ilves et al., 2006, 

Wang et al., 2013). PVs of different genera bind to distinct regions of the host 

chromosomes (Oliveira et al., 2006).  

E2 might play a role in processing of the viral RNA because interactions with 

serine/arginine splicing factors were observed (Lai et al., 1999). It was also 

shown that E2 regulates the expression of cellular proteins (Ramirez-Salazar et 

al., 2011) but this is controversial (Jang et al., 2009, Võsa et al., 2012). E2 

might also be involved in the packaging of the viral genome into virion particles 

(Zhao et al., 2000).  

 

Alternative splicing of the N-terminal domain results in shorter isoforms of the 

E2 protein (Stubenrauch et al., 2000). These function as repressors of viral 

transcription and replication (Ammermann et al., 2008, Stubenrauch et al., 

2007), which is important for maintaining of the genome copy number. The E2 

isoform can dimerise with the full-length E2 protein. These hetero-dimers can 

mediate transcription and initiation of replication but not partitioning of viral 

genomes (Kurg et al., 2006, Kurg et al., 2010).  

 

Very importantly, the E2 ORF can be lost or disrupted during viral genome 

integration into the host genome (Schwarz et al., 1985). This removes the 

repression from the transcription of the oncogenes E6 and E7 which promotes 

host cell transformation (1.4.2.5) (Bernard et al., 1989).   
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1.5.3. E4 protein 

The E4 regulatory proteins vary in size and are not well conserved amongst PV 

types regarding its primary amino acid sequence (Doorbar, 2013). In papillomas 

they can make up to 30% of total cellular protein (Doorbar et al., 1986). They 

predominantly localise to the cytoplasm but nuclear localisation was also 

observed (Doorbar, 2013, Nicholls et al., 2001). E4 of cutaneous HPV types 

localises primarily in cytoplasmic inclusion granules and much less in inclusion 

granules in the nucleus (Egawa, 1994).  

 

Although the primary amino acid sequence of E4 is not conserved, the proteins 

have similar modular structures (Doorbar, 2013). The N-terminus comprises a 

leucine cluster that mediates binding to cytokeratin. This is followed by a proline 

rich region and a region with predominantly positively charged amino acids. The 

adjacent loop domain might mediate interaction with cellular proteins. The C-

terminal multimerisation domain follows after a negatively charged and a 

second proline rich domain. The multimerisation domain mediates self-

association of the E4 proteins into amyloid fibres (McIntosh et al., 2008).  

 

The E4 ORF is located in the early region of the viral genome within the E2 

ORF (Danos et al., 1982) (Figure 1.4), but it is expressed from the viral late 

promoter in the suprabasal and granular epithelial layers during the productive 

phase of the viral life-cycle (Doorbar et al., 1997). It is expressed from a spliced 

transcript containing the initiation codon of the E1 ORF as well as a few down-

stream codons and the complete E4 ORF (Doorbar et al., 1990). The protein is 

thus referred to as E1^E4 (here abbreviated as E4). Recently, three splicing 

variants have been detected in HPV16; E6*^E4 (Milligan et al., 2007), E2^E4S 

and E2^E4L (Tan et al., 2012a) and one in HPV18, E1^E4S (Kho et al., 2013) 

but their functions are not yet known.  

 

The function of E4 is regulated by the proteases and kinases that become 

activated during the life-span of the host cell (Doorbar, 2013). E4 is initially 

expressed from the late promoter in the suprabasal epithelial layers as a protein 

of short half-life. It is phosphorylated by MAP kinases during the S phase of the 
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host cell, which condenses the loop structure and enhances binding to 

cytokeratin. In the upper suprabasal and granular epithelial layers, E4 is 

additionally phosphorylated by CDK. This opens the loop structure and allows 

the access of calpain to the E4 N-terminus. In the granular epithelial layer, 

calpain sequentially cleaves amino acids from the N-terminus and E4 is 

phosphorylated further by protein kinase C. This structural change facilitates the 

formation of amyloid fibres.  

 

The late expression of E4 implies a role in the productive phase of the viral life-

cycle. Indeed, E4 has been shown to contribute to viral genome amplification 

(Nakahara et al., 2005, Wilson et al., 2005, Wilson et al., 2007). E4 causes 

arrest of host cells in a G2-like phase, which promotes the amplification of the 

viral genome (Davy et al., 2005, Davy et al., 2002, Knight et al., 2004, Knight et 

al., 2006). In addition to that, E4 associates with E2 (Davy et al., 2009) which 

could contribute to viral genome amplification, however, this remains to be 

elucidated. 

Notably, infectious virions are exclusively produced in host cells expressing E4 

(Doorbar, 2013), thus E4 is involved in the synthesis of new virions (Nakahara 

et al., 2005, Wilson et al., 2005, Wilson et al., 2007). 

Low-risk E4 proteins are cross-linked by cellular transglutaminase, which 

compromises the cornified envelope and might facilitate the release and thus 

transmission of the virus (Brown et al., 2006, Doorbar, 2013). This is also 

achieved by formation of amyloid fibres and the association with and disruption 

of the cytokeratin filament network (Doorbar, 2013, Doorbar et al., 1991, 

Doorbar et al., 1997) or its reorganisation to the cell periphery (Roberts et al., 

1997).  

 

The E4 protein might be exploited in the future as a biomarker for active HPV 

disease and HPV disease severity (Borgogna et al., 2012, Griffin et al., 2012).  
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1.5.4. L1 structural protein  

L1 is the major structural protein of the PVs. HPV16 L1 (16L1) is a protein of 

506 amino acids accounting for a molecular weight of ~56 kDa that is 

expressed from the late viral promoter during the productive stage of the viral 

life-cycle (Wang et al., 2011). The transcribed ORF is not altered by splicing 

events. The L1 protein localises to the nucleus of the host cells. The 

phosphorylation of tyrosine 129 and 340 of the 16L1 in a L1/2 pseudovirion has 

been reported but a function was not attributed so far (Buck et al., 2013). L1 

proteins can self-assemble into VLPs which are similar to the native virion and 

potent immunogens (Buck et al., 2013). For these reasons the HPV vaccines 

are based on the L1 VLPs (1.3.8).  

 

Three-hundred-and-sixty L1 proteins are organised into 72 pentameric 

capsomers in the mature virus capsid as well as an unknown number of L2 

proteins (1.5.5) (Wolf et al., 2010). The L1 protein constitutes the entire exterior 

surface of the capsid. The N- and C-termini of each L1 protein face towards the 

virion lumen. The pentameric capsomers are connected via disulphide bonds 

between cysteine 175 of 16L1 with cysteine 428 of the neighbouring 16L1 

(Modis et al., 2002). These cysteine residues are conserved amongst PVs L1 

proteins. However, the surface loops of the pentameric capsomers are not well 

conserved which explains the limited cross-reactivity of neutralising antibodies 

against the vaccine HPV types (1.3.8) (Kemp et al., 2011, Kemp et al., 2012).  

 

As the sole surface protein on the PV capsid surface, L1 facilitates virus entry 

into the host cell by interacting with heparan sulphate proteoglycans on the 

extracellular basement membrane (Johnson et al., 2009). HPV16 L1 promotes 

this interaction via its lysine residues at positions 278, 356 and 361 (Knappe et 

al., 2007). This induces a conformational change to the capsid that allows the 

cleavage of L2 by furin (1.5.5). A further change to the capsid formation 

mediates binding of L1 to an unknown cell surface receptor which was initially 

thought to be integrin (Evander et al., 1997) but this is controversial (Huang and 

Lambert, 2012).  
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Upon completion of the viral life-cycle, L1 is preassembled into pentameric 

capsomers in the cytoplasm (Bird et al., 2008) and then imported into the 

nucleus via karyopherins (Nelson et al., 2002). This requires a NLS at the C-

terminus of L1 (Zhou et al., 1991). The assembly into the new virions takes 

place in the nucleus with the NLS playing a role in the encapsidation of the viral 

genome (Schäfer et al., 2002). The capsid slowly matures into a stable form 

needed for successful transmission by forming the disulphide bonds between 

neighbouring L1 proteins (Buck et al., 2005, Conway et al., 2009b).  

 

1.5.5. L2 structural protein 

The L2 protein is the minor capsid protein of PVs (Wang and Roden, 2013). 

HPV16 L2 (16L2) is comprised of 473 amino acids and migrates at ~ 73kDa on 

electrophoretic gels which is greater than its predicted molecular weight of 

~50kDa (Xi and Banks, 1991). In contrast to L1, L2 cannot self-assemble into 

VLPs. There are up to 72 L2 proteins in the PV capsid (Buck et al., 2008), but 

the precise number is not known. It is mostly hidden below the L1-composed 

surface of native virions (Wang and Roden, 2013), however, the actual 

configuration has not been established yet. The 16L2 protein is heavily 

phosphorylated (Xi and Banks, 1991) and sumoylated on the lysine at position 

35 which affects its stability and binding ability to L1 (Bergant Marusic et al., 

2010).  

 

The domain structure of L2 is highly conserved (Wang and Roden, 2013). It 

holds two cysteine amino acids towards the N-terminus that form an intra-

molecular disulphide hairpin loop (Campos and Ozbun, 2009). Mutation of these 

cysteines have been shown to result in non-infectious virions (Campos and 

Ozbun, 2009) but others observed improvement of infectivity (Conway et al., 

2009a). All L2 proteins contain a consensus furin cleavage motif (Richards et 

al., 2006) and a sortin nexin 17 binding motif (Bergant and Banks, 2013). The 

C-terminus of L2 has a proline motif that functions as a L1 binding site (Finnen 

et al., 2003). In addition to that, the N- and C-termini are comprised of positively 

charged amino acids that can not only function as DBD but also as NLS 

(Doorbar et al., 2012). 
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Because of its nature as a structural protein, L2 is expressed only in the upper 

most layers of the epithelium after the onset of E4 expression (Doorbar et al., 

2012). It localises to the nucleus of those terminally differentiated cells.  

 

L2 is required for virus entry and establishment of infection. Upon exposure of 

the virus to heparan sulphate of the extracellular matrix, a conformational 

change exposes the L2 N-terminus for furin cleavage (1.4.2.1) (Day and 

Schiller, 2009). Further conformational changes to the capsid facilitate 

internalisation of the virus via an unknown receptor. It is controversial, whether 

L2 could mediate binding to the unknown receptor (Kawana et al., 2001, Yang 

et al., 2003b), e.g. a hetero-tetramer of annexin A2 (Woodham et al., 2012). But 

further research is needed to determine the PV entry mechanism.  

 

After cell entry, the virus accesses the early and then the late endosomes as 

well as the trans-Golgi which requires the previous furin cleavage of L2 (Day et 

al., 2013). The interaction of L2 with the chaperone cyclophilin B facilitates the 

uncoating of the capsid by dissociating the L1 protein from the L2/viral genome 

complex (Bienkowska-Haba et al., 2012). The binding to sortin nexin 17 may 

help the complex to escape degradation by the lysosomes (Bergant and Banks, 

2013). The furin cleavage is also required for the L2/viral genome complex to 

exit from the endosomal compartment (Richards et al., 2006). This might be 

supported by L2-induced membrane destabilisation (Kämper et al., 2006) or by 

a trans-membrane like domain at the N-terminus of L2 which associates into 

higher order structures that penetrate the endosomal membrane (Bronnimann 

et al., 2013).  

 

The L2 protein promotes the trafficking of the L2/genome complex to the 

nucleus by interacting with the motor protein dynein and thus enables the 

complex to traverse the cytoplasm on the actin/microtubule network (Florin et 

al., 2006). During the establishment of initial infection, the L2/genome complex 

enters the nucleus requiring the breakdown of the nuclear envelope during 

mitosis (Pyeon et al., 2009a). During the productive phase of the viral life-cycle, 

L2 can most likely enter the nucleus mediated by its interaction with 

karyopherins (Bordeaux et al., 2006).   
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L2 regulates transcription by interacting with transcription factors like TBX2 and 

TBX3 (Schneider et al., 2013). This could inhibit transcription of the early viral 

genes and promotes transition towards viral assembly. L2 binds non-specifically 

to DNA via its DBD (Mallon et al., 1987, Wang and Roden, 2013) and thus 

recruits the viral genome as well as L1 and E2 to the nuclear domain 10 bodies 

of the nucleus to facilitate genome encapsidation and assembly of the virion 

(Day et al., 1998). Thereby, L1 and L2 binding is mediated by hydrophobic 

interactions (Finnen et al., 2003). 

 

1.5.6. E6 oncoprotein 

The E6 oncoproteins are not encoded by all PV types (1.4.1). High-risk HPV E6 

proteins have a more distinct oncogenic effect than the low-risk HPV E6 

proteins (Vande Pol and Klingelhutz, 2013). The sequence conservation 

amongst the E6 proteins is limited to for example 24% between HPV16 E6 

(16E6) and BPV1 E6, however, their structure is similar (Zanier et al., 2013).  

The E6 ORF is transcribed from the early PV promoter and the protein exists at 

low levels in the host cell with a half-life of approximately 4 h (Androphy et al., 

1987a, Vande Pol and Klingelhutz, 2013). The cellular localisation between 

high-risk and low-risk E6 proteins differs with high-risk E6 proteins being 

distributed throughout the cell while low-risk E6 proteins are predominantly 

confined to the nucleus (Guccione et al., 2002).  

 

Both, the N- and C-terminus of E6 comprise a zinc-binding domain. The N-

terminal domain also mediates dimerisation of the protein (Lipari et al., 2001) 

which is required for the degradation of p53 (Zanier et al., 2012). The 

interconnecting α-helical tube between the N- and C-terminus contains an 

LXXLL motif binding pocket (Zanier et al., 2013). The high-risk E6 proteins also 

contain an eight amino acid PDZ (post synaptic density protein, Drosophila disc 

large tumor suppressor, zonula occludens-1 protein) ligand motif at its C-

terminus. This sequences varies amongst HPV types and facilitate the targeting 

of different PDZ domain containing proteins (Thomas et al., 2005). The PDZ 

ligand motif can be phosphorylated which prevents PDZ domain containing 

proteins from binding.   
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The transformation efficiency of high-risk E6 proteins is moderate. It can expand 

the life-span of transfected keratinocytes, but only the co-expression with E7 

mediates immortalisation of the cells (Hudson et al., 1990). In agreement with 

this, 16E6 transgenic mice did not develop neoplasia or cancer (Riley et al., 

2003). This could only be observed in E6 and E7 transgenic mice. A weak 

transforming activity of human foreskin keratinocytes (HFKs) was detected for 

6E6 in combination with 16E7 (Halbert et al., 1992). In PV infection, E6 and E7 

are co-expressed in the host cell and have complementary functions. The E7 

oncoprotein degrades the RB protein p105, which results in stabilisation of p53 

and induction of apoptosis. To counteract, E6 mediates degradation of p53 and 

thus inhibits cell cycle arrest and apoptosis to allow completion of the HPV life-

cycle (Vande Pol and Klingelhutz, 2013), however, the precise cooperation 

between E6 and E7 differs between PV types.  

 

To exert its function, the E6 protein requires binding to a LXXLL motif containing 

binding partner. This modifies its structure and stabilises it which facilitates the 

interaction with cellular binding partners like p53 (Ansari et al., 2012). High-risk 

E6 proteins interact with the LXXLL motif of the cellular ubiquitin ligase E6 

associated protein (E6AP) (Brimer et al., 2007, Huibregtse et al., 1993). This 

promotes dimerisation of E6 via its N-terminal domain and the E6/E6AP 

complex can interact with the core DBD of native p53 (Ansari et al., 2012). 

E6AP provides the ubiquitination of p53 and thus its degradation (Scheffner et 

al., 1993, Zanier et al., 2012). Other cellular ubiquitin ligases like HERC3 could 

regulate the ubiquitin ligase activity of E6AP in the E6/E6AP/p53 complex 

(Kühnle et al., 2011). 

Low-risk E6 proteins can also interact with E6AP and activate its ubiquitin ligase 

activity but this does not lead to p53 degradation (Brimer et al., 2007). They 

inhibit the acetylation of p53 (Thomas and Chiang, 2005) and thus the 

transcription of pro-apoptotic genes (Giampieri et al., 2004).  

Studies in E6AP null mice have shown that E6 can degrade p53 via an E6AP 

independent pathway (Shai et al., 2007) but the mechanism remains to be 

investigated.  

The β-PV, µ-PV and ν-PVs predominantly bind to the LXXLL motif of the 

transcriptional co-activators mastermind-like protein 1 and 3 (MAML1 and 
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MAML3) (Tan et al., 2012b) and only poorly to the LXXLL motif of E6AP. This 

leads to repression of the Notch transcriptional activation complex.  

 

Interestingly, high-risk E6 and some cutaneous E6 can activate telomerase 

(Klingelhutz et al., 1996) by transcriptionally up-regulating the human 

telomerase reverse transcriptase component (Veldman et al., 2001). The 

benefit for this function are unknown since the completion of the viral life-cycle 

does not require the immortalisation of the host cell (Vande Pol and Klingelhutz, 

2013).  

 

A large-scale microarray analysis of tissue from 16E6 transgenic mice revealed 

the alteration of the expression of a multitude of genes compared to control 

mice (Mendoza-Villanueva et al., 2008). According to this analysis, E6 

deregulates genes involved in cell cycle progression, apoptosis and immune 

response. Some of these alterations are mediated by direct interaction of E6 

with specific transcription factors (Vande Pol and Klingelhutz, 2013).  

 

The E6 protein plays a role in the amplification of the viral genome because the 

viral genome amplification and L1 production were reduced in an organotypic 

raft culture system with an E6 mutant HPV18 genome (Wang et al., 2009). In β-

PVs, E6 might delay the differentiation of the host cell to favour the completion 

of the viral life-cycle by down-regulating the Notch pathway. Their interaction 

with the MAML1 and MAML3 proteins of the Notch transcription complex 

inhibits the transcription of genes that promote cellular differentiation (Meyers et 

al., 2013). 

To further support the viral life-cycle, the E6 proteins of low-risk and high-risk α-

PVs and β-PVs bind the pro-apoptotic protein Bak and mediate its degradation 

(Thomas and Banks, 1999, Underbrink  et al., 2008). Also, E6 interacts with 

procaspase-8 to prevent it from responding to apoptotic stimuli (Filippova et al., 

2007, Tungteakkhun and Duerksen-Hughes, 2008).  

In order to escape the immune surveillance of the host, E6 proteins promote 

resistance to IFN (Beglin et al., 2009) by down-regulating multiple IFN 

responsive genes (Nees et al., 2001).  
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Notably, there is an E6* isoform in high-risk HPV types which results from 

alternative splicing and comprises the N-terminal portion of the full-length E6 

protein. It counteracts the effects of the full-length E6 protein by binding to 

E6AP but inhibiting the degradation of p53 (Pim et al., 1997) and by stabilising 

procaspase 8 instead of mediating its degradation (Tungteakkhun et al., 2010).  

 

1.5.7. E7 oncoprotein  

The E7 protein of high-risk HPVs exerts oncogenic functions (Phelps et al., 

1988) but not every PV encodes an E7 ORF (1.4.1). E7 is a small, acidic protein 

of ~100 amino acids and a predicted molecular weight of ~11 kDa (Roman and 

Münger, 2013, Smotkin and Wettstein, 1986). With less than 1 h, the half-life of 

E7 is very short (Smotkin and Wettstein, 1987) because the protein is subject to 

proteasomal degradation (Reinstein et al., 2000).  

The E7 proteins are localised in the nucleus of the host cell (Guccione et al., 

2002) but have also been observed in the cytoplasm (Smotkin and Wettstein, 

1987). Indeed, E7 can shuttle between the nucleus and the cytoplasm. A 

hydrophobic motif at the C-terminus interacts with the central channel 

nucleoporin Nup62 and mediates its nuclear import (Eberhard et al., 2013). 

Another explanation for the localisation pattern observed might be the 

differential cellular localisation of three isoforms of HPV16 E7 (16E7): 16E7a1, 

16E7a and 16E7b (Valdovinos-Torres et al., 2008).  

 

The E7 protein structure is characterised by a flexible N-terminus and a more 

structured C-terminus (Calçada et al., 2013). The N-terminus contains two 

conserved regions (CR1 and CR2) that are similar to regions of simian 

vacuolating virus 40 (SV40) large T antigen and adenovirus E1A (Phelps et al., 

1988, Roman and Münger, 2013) and are conserved between HPV types. The 

CR2 domain contains a LXCXE motif which mediates binding to pRB and other 

pocket proteins like p107, p130 (Dyson et al., 1992, Münger et al., 1989). The 

N-terminus comprises a NLS between amino acids 1 – 37 (Knapp et al., 2009). 

There are two CXXC domains at the C-terminus of E7 that constitute a zinc-

binding site (Barbosa et al., 1989) that can also mediate dimerisation of the 

protein (Clements et al., 2000). However, it is not known yet whether E7 
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functions as a dimer in vivo (McLaughlin-Drubin and Münger, 2009). Moreover, 

the C-terminus possesses a NES and another NLS (Eberhard et al., 2013, 

Knapp et al., 2009).  

 

The stability of 16E7 is increased by phosphorylation of threonines at positions 

5 and 7 (Liang et al., 2008). The CR2 domain contains another phosphorylation 

motif that is targeted by casein kinase II (Barbosa et al., 1990). This is 

phosphorylated during the early cell cycle (Massimi and Banks, 2000). The 

serine at position 71 is phosphorylated during the S phase implying that E7 is 

differentially regulated during the cell cycle (Massimi and Banks, 2000).  

 

As an oncoprotein, E7 inhibits the differentiation of keratinocytes and facilitates 

cellular immortalisation (McLaughlin-Drubin and Münger, 2009), with high-risk 

E7 proteins having greater oncogenic potential than low-risk E7 proteins 

(Halbert et al., 1992). A characteristic feature of E7 is its binding and 

subsequent degradation of pRB which disrupts the differentiation process of the 

host cells and renders them competent for DNA synthesis (Collins et al., 2005). 

In vivo, E7 cooperates with E6 to achieve transformation of cells (1.5.6).  

 

The binding of E7 to pRB disrupts the pRB/E2F repressor complex, which then 

allows entry into S phase (Huang et al., 1993, Wu et al., 1993). The high-risk E7 

proteins destabilise pRB through proteasomal degradation (Boyer et al., 1996) 

to accomplish cell transformation. In agreement with its lower oncogenic 

potential, low-risk E7 proteins bind pRB with less affinity (Münger et al., 1989).  

 

HPV16 E7 can also bind E2F transcription factor directly to enhance its 

transcriptional activity (Hwang et al., 2002). This increases the expression of the 

transcriptional repressor E2F6. However, 16E7 abrogates its repressor activity 

to ensure the S phase state of the cell (McLaughlin-Drubin et al., 2008). E7 

enhances the expression of the E2F regulated early mitotic inhibitor 1 (EMI1) 

and stabilises the protein (Yu and Münger, 2013). EMI1 functions as an inhibitor 

of the ubiquitin ligase complex anaphase promoting complex/cyclosome. This 

inhibition could promote cellular DNA replication in favour of the viral life-cycle 

and may cause prometaphase delay and centrosome overduplication. E7 also 
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affects expression of cyclin A and E (Zerfass et al., 1995) and inhibits the 

growth-inhibitory activities of tumour suppressors p21CIP1 (Funk et al., 1997) 

and p27KIP1 (Zerfass-Thome et al., 1996) to instigate entry into S phase. It is 

conceivable that the abrogation of p21CIP1 and p27KIP1 function could be 

responsible for the resistance to transforming growth factor-β mediated growth 

inhibition observed in E7 expressing keratinocytes (Pietenpol et al., 1990).  

 

The E7 proteins are also involved in the viral life-cycle, prevention of apoptosis 

and immune evasion strategies. During the viral life-cycle, high-risk 16E7 and 

18E7 proteins were shown to be required for the productive stage (Flores et al., 

2000, McLaughlin-Drubin et al., 2005). In contrast, the low-risk 11E7 and the 

high-risk 31E7 proteins appear to play a role in maintenance of the viral 

genome in the non-productive phase of the viral life-cycle (Oh et al., 2004, 

Thomas et al., 1999).  

 

One way 16E7 can inhibit apoptosis of the host cell is by interacting with the 

actin-binding protein gelsolin (Mileo et al., 2013). This interaction prevents its 

cleavage by caspase-3, which reduces the amount of the pro-apoptotic N-

terminal cleavage product but also the anti-apoptotic C-terminal cleavage 

product. However, 16E7 can also directly interact with the N-terminal cleavage 

product to decrease its pro-apoptotic effect.  

 

The E7 proteins employ many strategies to evade the host’s immune 

surveillance. HPV16 E7 was shown to disrupt the function of the double 

stranded DNA sensor toll-like receptor 9 of the innate immune system (Hasan et 

al., 2013). This is achieved by down-regulating the expression of toll-like 

receptor 9 through epigenetic regulation. In addition to this, E7 disrupts the 

response to IFN-α signalling by binding to p48, the DNA-binding component of 

the IFN-stimulated gene factor 3 transcription complex (Barnard and McMillan, 

1999). The interaction retains p48 in the cytoplasm and thus prevents the 

transcription of IFN-α response genes.  

With the down-regulation of major histocompatibility complex (MHC) class I 

molecules from the cell surface, the E7 proteins also modulate the adaptive 

immune response. HPV16 E7 was shown to inhibit IFN-γ induced 
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phosphorylation of STAT1 (Zhou et al., 2013). This blocked the IFN regulatory 

factor-1 and the transporter associated with antigen processing (TAP) and 

prevented the cell surface expression of MHC class I molecules and lysis by T 

cells. 

 

Notably, E7 causes chromosomal instability in multiple ways (McLaughlin-

Drubin and Münger, 2009). It was recently observed that 16E7 enhances the 

expression of the DNA replication initiation factor Cdt1 (Fan et al., 2013). The 

up-regulation of Cdt1 leads to cell cycle arrest in the G2 phase and many 

rounds of host cell replication without entering mitosis. This facilitates genomic 

instability and might promote the integration of the viral genome into the host 

chromosomes (Kessis et al., 1996); a progress that is often associated with 

HPV induced cancer development (1.4.2.5).   
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1.6. E5, a multifunctional oncoprotein  

The E5 protein is one of the PV oncoproteins but not every PV type encodes for 

an E5 gene (1.4.1). It is, however, expressed in the clinically most relevant α–

genus HPV types as well as in PVs of the δ– and κ–genera including the 

carcinogenic BPV types. Compared to the well-studied E6 and E7 oncoproteins 

its properties and functions are poorly understood. 

 

Bravo and Alonso classified 110 E5 sequences of α-HPV types into four 

separate families namely E5α, -β, -γ, and -δ according to their phylogenetic 

relationships as well as chemical characteristics (Bravo and Alonso, 2004). The 

E5α family is represented in the α5, α6, α7, α9, and α11 PV species and 

comprises all high-risk HPV types including HPV16, 18 and 31. The E5α ORF is 

approximately 240 base pairs (bp) in length and encodes highly hydrophobic 

amino acids that potentially form three trans-membrane domains (TMDs). The 

amino acid sequences, however, are poorly conserved. The homology amongst 

E5β proteins is relatively high. Its ORF is much smaller with 140 bp and 

encodes a protein with one potential TMD. The E5β proteins can be found in 

HPV types of the α2, α3, α4, and α12 PV species with HPV2a E5 being a 

representative. HPV6b and HPV11 E5 represent the E5γ family, which is 

extremely well conserved. It is encoded by a 270 bp ORF, which expresses a 

protein of approximately 90 amino acids with three putative TMDs. These E5 

proteins are exclusively found amongst the α10 PV species. The E5δ proteins 

can also be found amongst the α10 species besides the α1 and α8 species. 

These are encoded by an ORF of approximately 150 bp in length which 

translated into a protein with one putative TMD represented by HPV13 E5. 

Thus, the E5 proteins of the 4 families appear to have very diverse 

characteristics, but they share common functions (1.6.1, 1.6.2, 1.6.3).  

 

The best characterised E5 protein to date is the E5α protein 16E5. It consists of 

83 amino acids that are predicted to form three α- helical TMDs (Figure 1.6) 

(Bubb et al., 1988, Wetherill et al., 2012a). The C-terminal domain reaches into 

the cytoplasm while the N-terminal domain projects into the compartment 

lumen/extracellular space (Krawczyk et al., 2010, Wetherill et al., 2012a), 
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although one group noted the opposite orientation (Hu and Ceresa, 2009). 

There is evidence that 16E5 forms dimers by interactions of their hydrophobic 

regions (Gieswein et al., 2003, Kell et al., 1994). Also, the formation of a homo-

hexamer that constitutes a viroporin was observed (Wetherill et al., 2012a). 

Twelve naturally occurring 16E5 protein variants have been identified with an 

increased usage of mammalian codons correlating with severity of 

pathogenesis (Bible et al., 2000, Nath et al., 2006). Post-translational 

modifications of 16E5 are not known (Rodriguez et al., 2000) but 18E5 is likely 

to be phosphorylated at a serine residue in its second TMD (communicated by 

Prof L. Chow at Molecular Biology of DNA Tumour Viruses Conference, 2010).  

 

The E5 proteins of BPV are not classified amongst the E5α – E5δ families. They 

are small with BPV1 E5 constituting 44 amino acids (Burkhardt et al., 1987, 

Schiller et al., 1986, Schlegel et al., 1986) and BPV4 comprising 42 amino acids 

Figure 1.6 Model of the 16E5 monomer (A) and homo-hexamer (B). The 16E5 monomer is 

predicted to have three TMDs with the C-terminus facing the cytoplasm and the N-terminus 

facing the compartment lumen. Six monomers can associate into a homo-hexamer that has 

viroporin functions. Adapted from Wetherill et al., 2012a. 
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(Pennie et al., 1993). This short length allows for the formation of one TMD only 

which is orientated with the C-terminus towards the lumen and the N-terminus 

facing the cytoplasm (Burkhardt et al., 1989). Like 16E5, BPV1 E5 forms dimers 

via hydrophobic interactions but with additional formation of disulphide bonds 

(King et al., 2011, Oates et al., 2008, Windisch et al., 2010). 

 

HPV16 E5 was detected with a specific antibody in HPV16 positive cervical 

tissue as well as CIN1 and CIN2 samples (Chang et al., 2001, Kell et al., 1994). 

Sixty per cent of cervical cancer samples with episomal HPV16 genome and 

80% of low-grade squamous intra-epithelial lesions (LSILs) as well as 90% of 

high-grade squamous intra-epithelial lesions (HSILs) showed 16E5 protein 

expression. However, antibodies to the 16E5 proteins are limited in their 

applications and despite several attempts (Adam et al., 2000, Chang et al., 

2001, Chen and Mounts, 1989, Hwang et al., 1995, Kell et al., 1994, Sahab et 

al., 2012), there is no reliable and specific 16E5 antibody available to date. This 

limits the study of the 16E5 protein to epitope tagged, exogenously expressed 

protein.  

 

For detection of endogenous E5, mRNA is frequently used as surrogate for the 

presence of the protein. HPV16 E5 mRNA is clearly expressed in cervical 

cancer samples and LSILs and HSILs with 16E5 and 16E6 mRNA being linked 

to decreased patient survival (Schrevel et al., 2011, Stoler et al., 1992). A 

similar study in HPV16 positive cervical pre-cancerous lesions showed that 76% 

of LSILs and 70% of HSILs express varying levels of 16E5 mRNA (Lorenzon et 

al., 2011). Also, the HPV16 positive CaSki cell line expresses E5 mRNA as well 

as E5 protein as determined by mass spectrometry analysis (Sahab et al., 

2012, Schmitt and Pawlita, 2011).  

The BPV E5 protein was detected in bovine cutaneous warts and urinary 

bladder tumours (Borzacchiello et al., 2003, Borzacchiello et al., 2006). 

Additionally, fibropapillomas of water buffalos and sarcoids of horses showed 

BPV E5 expression (Carr et al., 2001, Silvestre et al., 2009). 

 

Due to the lack of a specific antibody, the cellular localisation of 16E5 was 

determined with overexpressed and epitope tagged 16E5. As a highly 
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hydrophobic protein with three TMDs, 16E5 was shown to localise mainly to 

endomembrane compartments. The majority of 16E5 proteins were detected at 

the endoplasmic reticulum (ER) and the Golgi apparatus (Golgi) (Ashrafi et al., 

2006b, Auvinen et al., 2004, Conrad et al., 1993, Gruener et al., 2007, Lewis et 

al., 2008) with occasional detection at the nuclear membrane and the plasma 

membrane (Gieswein et al., 2003, Hu et al., 2009, Hu and Ceresa, 2009). The 

BPV1 E5 protein shows similar distribution to cellular membranes (Schlegel et 

al., 1986). 

 

No intrinsic enzymatic activity is known for the E5 proteins, however, future 

research might reveal an intrinsic function of the 16E5 viroporin. So far, it is 

assumed that E5 exerts its roles via interaction with host cell proteins. In fact, 

the expression of 16E5 in cultured cells affects the expression of 25 to 179 host 

genes depending on cell types and experimental conditions (Kivi et al., 2008, 

Sudarshan et al., 2010). This indicates a significant but poorly investigated 

impact of E5 on its host cells. Roles of E5 have been identified in host cell 

transformation (1.6.1), the PV life-cycle (1.6.2) and viral immune evasion 

(1.6.3). The PV E5 protein is therefore a multifunctional oncoprotein.  

 

1.6.1. Oncogenic potential of E5 

The E5 protein of BPV is the main oncogenic protein of these PV types (Dimaio 

et al., 1986, Schiller et al., 1986, Schlegel et al., 1986). It is capable of 

transforming mouse fibroblasts and mortal human fibroblasts (Bergman et al., 

1988, Petti and Ray, 2000). The E5 protein of HPV is a weaker transforming 

protein and is most likely not essential for carcinogenesis since it is not 

expressed in all HPV16 positive tumours (Venuti et al., 2011).  

The first evidence of the weak transforming property of an HPV E5 protein 

came from 6E5 which induced anchorage independent growth in murine NIH 

3T3 cells and formation of small colonies in C127 cells (Chen and Mounts, 

1990). Shortly afterwards, 16E5 was shown to induce anchorage-independent 

growth in various established cell lines (Leechanachai et al., 1992, Leptak et al., 

1991, Pim et al., 1992) and to have mitogenic effects in primary human foreskin 

epithelial cells (Straight et al., 1993). Further evidence for the transforming 
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property of 16E5 was gathered when its expression enhanced the proliferation 

and colony formation of primary baby rat kidney cells achieved by 16E7 

(Bouvard et al., 1994a, Valle and Banks, 1995). 

This effect was confirmed in transgenic mouse models which expressed a 

codon optimised 16E5 sequence in the basal compartment of the stratified 

squamous epithelia as well as a combination of 16E5, 16E6 and 16E7 

oncoproteins (Maufort et al., 2010, Maufort et al., 2007). The formation of 

tumours was greater in 16E5/16E6 and 16E5/16E7 expressing mice than in 

mice expressing 16E6 and 16E7 individually. Mice expressing 16E5 only 

showed development of cancers when additionally treated with oestrogen with 

16E5 contributing to the promotion and progression of cancer, not to its 

initiation. An oncogenic potential of the HPV E5 proteins is therefore firmly 

established in physiologically relevant cell lines in vitro and in transgenic mouse 

models in vivo.  

 

1.6.1.1. E5 promotes transformation via EGF-R and down-stream 

mitogenic signalling 

The in vitro transformation by 16E5 is facilitated by epidermal growth factor 

(EGF) and its receptor (EGF-R) (Leechanachai et al., 1992, Pim et al., 1992, 

Straight et al., 1993, Tomakidi et al., 2000b). Also, the formation of skin tumours 

in vivo in 16E5 transgenic mice requires expression of EGF-R (Genther 

Williams et al., 2005). Thus, the ability of HPV E5 to transform host cells could 

be associated with the manipulation of EGF-R and its down-stream signalling. 

Indeed, 70% - 90% of cervical cancers show increased levels of EGF-R (Kim et 

al., 2004, Mathur et al., 2000, Oh et al., 2000, Schrevel et al., 2011) suggesting 

that the manipulation of EGF-R mitogenic pathways is crucial for HPV E5 

induced transformation.  

 

The exact mechanism of EGF-R dependent transformation by 16E5 is highly 

controversial. The initial widely accepted hypothesis was based on the 

interaction of E5 with the 16K subunit of the vacuolar H+ - ATPase (Figure 1.7) 

(Conrad et al., 1993). This interaction was proposed to lead to a decline of 

endosomal acidification and thus decreased EGF-R degradation after 
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stimulation (Straight et al., 1995, Straight et al., 1993). This way, the receptor 

recycles to the cell surface resulting in constitutive mitogenic signalling. The 

interaction with the 16K is conserved for the BPV1 E5 protein, the main BPV 

oncoproteins, and would therefore support this hypothesis (Schapiro et al., 

2000).  

 

A more recent study however showed that the binding of 16E5 to the 16K 

subunit is independent of its effects on EGF-R (Rodriguez et al., 2000). It was 

also observed that 16E5 promotes the activity of EGF-R by increasing its 

phosphorylation which can lead to increased expression of the prostaglandin E2 

receptor EP4 (Oh et al., 2009, Straight et al., 1993). Other studies reported a 

direct binding between 16E5 and EGF-R that might be responsible for 

increased EGF-R activity (Hwang et al., 1995), but this finding could only be 

reproduced for 6E5 and not for 16E5 (Conrad et al., 1994). Very interestingly, 

one study even indicated a 16E5-induced EGF-R down-regulation (Pedroza-

Saavedra et al., 2010).  

 

Another concept emerges which proposes that E5 prevents the fusion of early 

endosomes with late endosomes and thus interferes with the correct receptor 

trafficking (Figure 1.7). One study suggests that endosome fusion is prevented 

by reorganisation of the actin cytoskeleton (Thomsen et al., 2000) but a later 

study could not confirm alterations to the cytoskeleton and suspects a direct 

disruption of membrane fusion by 16E5 (Suprynowicz et al., 2010). In addition 

to modifying receptor trafficking, 16E5 disrupts the binding of EGF-R to its 

ubiquitin ligase the cellular casitas B-lineage lymphoma proto-oncogene (Zhang 

et al., 2005). This reduces its ubiquitination and subsequent proteasomal 

degradation and facilitates receptor recycling. 

 

A modification of cellular trafficking by 16E5 could be responsible for the 

increased plasma membrane expression of caveolin-1 and ganglioside GM1 

that has been observed (Suprynowicz et al., 2008). Elevated ganglioside GM1 

expression promotes mitogenic signalling by the EGF-R at low ligand 

concentrations (Figure 1.7) (Nishio et al., 2005). Thus, it is possible that the E5 
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induced alteration of cellular trafficking enhances ligand dependent EGF-R 

signalling in multiple complementary ways.  

An involvement of 16E5 in cellular trafficking events is indeed conceivable since 

16E5 interacts with karyopherin β3 (KNβ3) which plays an important role in the 

exocytic trafficking pathway (Krawczyk et al., 2008a) although the function of 

the KNβ3/16E5 complex has not been determined yet. Bravo and colleagues 

discovered that 16E5 alters the lipid composition of cellular membranes and 

proposes that this effect of 16E5 precedes the modification of cellular trafficking 

(Bravo et al., 2005).  

Importantly, the cellular localisation of E5 at the ER and Golgi predestine it for 

roles in trafficking events but the cellular proteins that are involved in 

exocytic/endocytic trafficking and interact with E5 are still to be identified. 

 

HPV16 E5 was shown to activate down-stream MAP kinases dependent and 

independent of EGF (Gu and Matlashewski, 1995). The treatment of A31-3T3 

fibroblasts expressing 16E5 with EGF increased the activation of EGF-R and 

the down-stream MAP kinases extracellular signal-regulated kinase 1/2 

(ERK1/2) (Crusius et al., 1997). But 16E5 also promotes the translocation of the 

phorbol ester PMA-dependent protein kinase C to the cellular membranes 

which results in a down-stream activation of the MAP kinase ERK1/2 

independent of EGF (Crusius et al., 1997, Crusius et al., 1999, Crusius et al., 

2000). This is achieved by the induction of stress on the human keratinocyte 

expressing 16E5. Notably, 16E5 also activates further MAP kinases like p38 in 

response to stress which, however, are not involved in mitogenic signalling 

pathways. 

The activation of MAP kinases facilitates their translocation into the nucleus and 

promotes the activation of transcription factors. Indeed, the expression of 11E5a 

mRNA in GW samples correlated with the increased expression of c-jun (Chen 

et al., 1996a). In accordance with this, 16E5 enhanced the expression of c-jun 

in A31-3T3 fibroblasts and human keratinocytes (Chen et al., 1996a, Chen et 

al., 1996b, Chen et al., 1996c) as well as the expression of c-myc in A31-3T3 

fibroblasts (Crusius et al., 1997). HPV16 and 11E5 can also transactivate the c-

fos promoter (Chen et al., 1996c). The down-stream effect of these proteins is 
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progression through the cell cycle (see below) and the stimulation of the E6 and 

E7 oncogene transcription (Venuti et al., 2011).  

 

The progression through the cell cycle is mediate by decreased expression of 

tumour suppressors. HPV11E5 and 16E5 were shown to down-regulate the 

transcription of p21WafI/SdiI/CipI in NIH 3T3 cells and immortal human 

keratinocytes (Tsao et al., 1996). It is conceivable that this is achieved by the 

up-regulation of c-jun expression since c-jun can repress p21WafI/SdiI/CipI 

transcription. Also, 16E5 can reduce the half-life of p27KIP1 (Pedroza-Saavedra 

et al., 2010). This effect is enhanced by stimulation with EGF. The decreased 

cellular levels of the tumour suppressor proteins p21WafI/SdiI/CipI and p27Kip1 can 

mediate the exit from cell cycle arrest.  

 

HPV16 E5 was also shown to interact with further EGF-R family members 

(Crusius et al., 1998). Upon stimulation of 16E5 expressing cells with EGF the 

EGF-R related proteins 2 and 3 (ErbB2 and ErbB3) receptors exhibited 

increased phosphorylation. No effect was seen on the ErbB4 receptor. In 

contrast, in CIN samples the expression of 16E5 correlated with the expression 

of ErbB4 receptor and EGF-R (Chang et al., 2001). Later it was revealed that 

the ErbB4 (JM-b/CYT-1) isoform forms a complex with 16E5 which leads to a 

ligand-independent activation of the down-stream pathway (Chen et al., 2007). 

 

Another mitogenic pathway activated by 16E5 is the G-protein coupled 

endothelin-1 receptor A pathway. This constitutes an autocrine loop where HPV 

transfected keratinocytes express and secrete endothelin-1 to stimulate their 

own growth via their endothelin A receptors (Venuti et al., 1997). HPV16 E5 is 

thought to increase signalling via this pathway (Venuti et al., 1998) but the 

mechanism remains to be elucidated.   
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1.6.1.2. Further oncogenic functions of E5 

A different mechanism for the oncogenic effect of 16E5 is cell-cell fusion (Gao 

and Zheng, 2010, Hu et al., 2009, Hu and Ceresa, 2009). The formation of bi-

nucleated cells required the expression of 16E5 on both cells with the C-termini 

facing the extracellular space. And indeed, tetraploidy was described as an 

early event in cervical cancer development (Olaharski et al., 2006). In 

accordance with this, the low-risk 6E5 was not able to produce bi-nucleated 

cells. However, the orientation of 16E5 with the C-terminus facing the 

extracellular space is controversial (Krawczyk et al., 2010, Wetherill et al., 

2012a) and more research is needed to investigate the involvement of 16E5 in 

the introduction of tetraploidy in cervical cancer development.  

 

HPV16 E5 also contributes to cancer progression indirectly by facilitating viral 

episome integration into the host genome which is frequently observed in 

cervical cancer (1.4.2.5). The expression of 16E5 in keratinocytes induced the 

expression of the IFN regulatory factor-1 transcription factor which promoted 

transcription of the IFN-β gene and other IFN-stimulated genes like caspase 8 

and RNA-dependent protein kinase R (Muto et al., 2011). In the HPV16 positive 

W12 cell line the treatment with IFN-β accelerated the progression from an 

episomal cell population into a cell population with integrated viral genomes 

(Herdman et al., 2006). Thus, it is conceivable that 16E5 promotes progression 

into cancer by facilitating the integration of the viral genome by expression of 

IFN-β. However, this role of 16E5 is not in favour for the virus, since the 

integration of the viral genome means the abortion of the viral life-cycle.  

 

BPV1 E5 exerts its transformational ability via the platelet-derived growth factor 

β-receptor (PDGFβ-R) (Klein et al., 1999, Lai et al., 2005). The BPV1 E5 dimer 

binds directly to two PDGFβ-R inducing their dimerisation and activation (Cohen 

et al., 1993, Drummond-Barbosa et al., 1995, Goldstein et al., 1994, Nilson and 

Dimaio, 1993, Petti et al., 1991). The PDGFβ-R activation is strictly independent 

of the receptor ligand since the activation of mutant PDGFβ-R lacking the 

extracellular ligand binding domain is possible (Drummond-Barbosa et al., 

1995, Staebler et al., 1995). Instead the receptor dimerisation induces auto-
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transphosphorylation and promotes the down-stream mitogenic signalling (Lai 

et al., 1998, Petti and Dimaio, 1994). The interaction of BPV1 E5 – PDGFβ-R is 

highly specific because BPV1 E5 cannot bind the closely related PDGFα-R 

(Goldstein et al., 1994). It is thought that BPV E5 can transform the host cells 

independently of the PDGF-R by activating c-src (Suprynowicz et al., 2002) but 

this is controversial (Lai et al., 2005).  

 

 

Figure 1.7 E5 modulates cellular trafficking pathways. Schematic showing the potential 

effects of E5 on host cell trafficking pathways. E5 down-regulates HLA class I, II and CD1d 

from the cell surface (1.) but up-regulates the cell surface expression of caveolin-1 and 

ganglioside GM1 (2.). The inhibition of endosome acidification (3.) or the perturbation of 

endosome fusion to acidic lysosomes (4.) may promote EGF-R recycling to the cell surface 

(5.). v-ATPase = vacuolar ATPase. Adapted from Wetherill et al., 2012b. 
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1.6.2. E5 and the viral life-cycle 

The E5 protein is not expressed in all PV types (1.4.1). Therefore its role in the 

viral life-cycle is presumably not essential. It is thought to indirectly contribute to 

the completion of the viral life-cycle by generating the adequate cellular 

environment (Venuti et al., 2011). 

 

The HPV E5 ORF is only expressed at low levels in the early stages of the viral 

life-cycle (Longworth and Laimins, 2004) because it is at position 4 on the 

polycistronic viral mRNA and is unlikely to be translated by the leaky ribosome-

scanning mechanism employed. Upon alternative splicing in differentiating host 

cells (1.4.2.3) the E5 ORF constitutes the second ORF on the late polycistronic 

RNA and is therefore thought to be expressed highly in suprabasal epithelial 

cells (Figure 1.5). Similar expression patterns were observed for BPV1 and 

BPV4 E5 proteins (Araibi et al., 2004, Burnett et al., 1990).  

 

The involvement of high-risk HPV E5 proteins in the viral life-cycle was 

investigated with human keratinocytes transfected with a wildtype (WT) and an 

E5 knock out (E5 KO) viral genome, respectively. In undifferentiated cells the 

KO of 16E5 and 31E5, respectively, did not show any phenotype implying that 

16E5 and 31E5 do not play a role in the non-productive phase of the viral life-

cycle (Fehrmann et al., 2003, Genther et al., 2003). This is in accordance with 

its potentially low expression level at this stage.  

Differentiating NIKS, an immortalized keratinocyte cell line, with the 16E5 KO 

genotype only showed a minor reduction in unscheduled DNA synthesis 

compared to control cells. No effects were seen on the viral genome 

amplification, expression of late viral genes and alteration of normal 

keratinocyte differentiation (Genther et al., 2003). Therefore, 16E5 might only 

play a minute role in the productive stage of the HPV16 life-cycle. 

Interestingly, the KO of 31E5 in differentiating primary human foreskin 

keratinocytes significantly reduced the amplification of the viral genome and the 

expression of late genes (Fehrmann et al., 2003). A decrease in the expression 

of cyclins A and B implies that 31E5 KO cells do not re-enter the cell cycle 

efficiently upon cell differentiation.  
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Thus, there is general consensus that E5 functions in the late, productive 

stages of the viral life-cycle, but the scope of the involvement appears to 

deviate between different HPV types. However, this observation could be due to 

different cell types used in these two studies (Fehrmann et al., 2003, Genther et 

al., 2003) so further research is needed to identify conserved and individual 

functions in the viral life-cycle of the E5 proteins from different HPV types. 

 

HPV16 E5 inhibits apoptosis of the host cell which favours the completion of the 

HPV life-cycle indirectly (Figure 1.5). Cells expressing 16E5 showed reduced 

apoptosis when stimulated with Fas ligand and tumour necrosis factor-related 

apoptosis-inducing ligand compared to control cells (Kabsch and Alonso, 

2002b). This is achieved by down-regulation of the Fas receptor and impaired 

formation of the death-inducing signalling complex, respectively. This function of 

16E5 was confirmed in a physiologically more relevant organotypic raft culture 

system (Kabsch et al., 2004).  

HPV16 E5 also reduces apoptosis after exposure to UVB irradiation which is 

facilitated by the activation of ERK1/2 and phosphatidylinositol 3-kinase-protein 

kinase B (1.6.1) (Zhang et al., 2002). The apoptotic response to hydrogen 

peroxide is reduced by targeting the apoptosis regulator BAX for proteasomal 

degradation (Oh et al., 2010). A co-localisation of 16E5 with the apoptosis 

regulator Bcl-2 was also observed, however, an interaction of the two proteins 

or a function of the potential complex was not investigated (Auvinen et al., 

2004). 

One study showed that 16E5 inhibits the ER stress pathway by decreasing the 

expression of cyclooxygenase-2 (COX-2), the transcription factors x-box-

binding protein (XBP-1) and the serine/threonine-protein 

kinase/endoribonuclease IRE1α (Sudarshan et al., 2010). However, others saw 

an up-regulation of COX-2 by 16E5 (Kim et al., 2009, Subbaramaiah and 

Dannenberg, 2007) and by 6bE5 and 11E5, respectively (Wu et al., 2005, Wu et 

al., 2007c). A lack of effect of 6bE5 on COX-2 and XBP-1 was also observed 

(Condjella et al., 2009). Thus, the impact of E5 on the ER stress pathway is still 

controversial. 

Interestingly, 16E5 expressing cells promote apoptosis in response to osmotic 

stress (Kabsch and Alonso, 2002a). It is conceivable that this is facilitated by its 
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viroporin conformation (Wetherill et al., 2012a), however, further research is 

needed to investigated this possibility.   

 

The potential expression of 16E5 at the plasma membrane was shown to inhibit 

cell-cell communication in monolayer cell cultures and organotypic raft cultures 

(Oelze et al., 1995, Tomakidi et al., 2000a). This is achieved by 

dephosphorylation and possibly down-regulation of connexin 43, a major gap 

junctional protein and could lead to decreased sensitivity to growth signals from 

adjacent cells and consequential increased cell proliferation. The 16K subunit of 

the vacuolar H+ - ATPase also forms part of gap junctions and is a conserved 

binding partner of PV E5 proteins. It is therefore highly likely that this interaction 

contributes to the PV life-cycle by enhancing cell proliferation (DiMaio and Petti, 

2013). An inhibition of cell-cell communication was also observed for BPV E5 

proteins with connexin 26 and calpain3 potentially playing roles (Ashrafi et al., 

2000, Roperto et al., 2010, Silva et al., 2013). Notably, the E5 induced loss of 

cell-cell communication might be in contrast to the E5 induced cell-cell fusion 

observed by others (Hu et al., 2009). This underlines that the functions of E5 

are poorly understood and further research is needed for clarification.  

 

HPV16 E5 was shown to interact with the cellular EVER and ZnT-1 proteins 

(1.3.1) (Lazarczyk et al., 2008). This causes a disruption of the zinc 

homeostasis that is pivotal for the HPV life-cycle (Lazarczyk and Favre, 2008). 

In EV patients the zinc imbalance is caused by the mutated EVER1 or EVER2 

genes which makes patients extremely susceptible for β-genus HPV types that 

do not encode an E5 protein (Lazarczyk et al., 2009, Orth, 2008).  

 

In contrast to activation of mitogenic pathways (1.6.1.1), 16E5 reduces the 

proliferation and with it the differentiation of keratinocytes (Belleudi et al., 2011). 

To achieve this, 16E5 decreases the transcript and protein levels of the 

keratinocyte growth factor receptor/fibroblast growth factor receptor 2b and 

modulates its endocytic trafficking. The exact mechanism of alteration of 

endocytic trafficking remains to be elucidated.  
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It was also proposed that 16E5 plays a role in viral egress. The exit of the 

virions could be facilitated by the formation of koilocytes which emerge from 

cells expressing 16E5 in combination with E6 (DiMaio and Petti, 2013, 

Krawczyk et al., 2008b). For this, 16 E5 interacts with the calpactin I protein 

complex and drives it to the peri-nuclear region where it induces the formation 

of the characteristic peri-nuclear vacuoles by promoting membrane fusion 

(Krawczyk et al., 2011). The typical enlarged nuclei could originate from the 

16E5 induced endoreplication (Hu et al., 2010).  

 

Taken together, PV E5 proteins do not play a role in the early non-productive 

phase of the viral life-cycle but in the later productive stage. It contributes 

indirectly by promoting host cell proliferation and by preventing apoptosis. 

Maybe the formation of koilocytes facilitates the exit of the assembled virions 

from the nucleus.  

 

1.6.3. E5 and PV immune evasion 

The establishment of a persistent infection is crucial for the PV life-cycle (1.4.2) 

and requires evasion from the host’s immune system (1.3.7). A common 

mechanism for viruses to avoid recognition by the host’s immune cells is the 

prevention of antigen presentation by HLA/MHC class I molecules on the cell 

surface (Piguet, 2005). This mechanism is also employed by HPV since the 

surface down-regulation of HLA class I molecules can be observed in SCCs of 

the cervix (Cromme et al., 1993, Ritz et al., 2001). 

 

The cell surface down-regulation of HLA class I molecules was shown to be 

mediated by the E5 protein (Figure 1.5 and Figure 1.7) (Ashrafi et al., 2006a). 

This function is highly conserved amongst all PV E5 proteins tested (2aE5, 

6bE5a, 16E5, 83E5, BPV1 E5, BPV4 E5) (Ashrafi et al., 2006a, Ashrafi et al., 

2005, Ashrafi et al., 2002, Cartin and Alonso, 2003).  

The impact of E5 is specific to certain HLA class I types. HPV16 E5 expressing 

cells only down-regulate the HLA-A and HLA-B types from the cell surface to 

prevent recognition by cytotoxic T lymphocytes (Ashrafi et al., 2005). The HLA-
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C and HLA-E types are not affected because they function as inhibitory ligands 

for natural killer cells.  

 

E5 employs various strategies to achieve the down-regulation of HLA/MHC 

class I from the cell surface. Upon 16E5 expression, HLA class I molecules are 

retained in the Golgi (Ashrafi et al., 2005). There, 16E5 interacts with the HLA 

class I heavy chain (HC) via its 1st TMD, which could be responsible for its 

retention (Ashrafi et al., 2006b, Cortese et al., 2010). Others observed a ternary 

complex of 16E5, HLA HC and its chaperone calnexin (Gruener et al., 2007) 

and indeed, in calnexin deficient cells, 16E5 cannot prevent HLA class I 

expression on the cell surface. Also, the interaction of 16E5 with the HLA class I 

chaperone B-cell receptor-associated protein 31 (Bap31) could play a role in the 

HLA class I retention (Regan and Laimins, 2008), but this remains to be 

elucidated. The reduced cell surface expression of HLA class I was shown to 

successfully prevent recognition of 16E5 expressing cells by CD8+ T cells 

(Campo et al., 2010).  

Notably, 16E5 does not repress the expression of the HLA class I HC and the 

required TAP. Its inhibitory effect on HLA class I presentation on the cell surface 

is reversible by treatment with IFN-β (Ashrafi et al., 2005). In contrast, BPV4 E5 

represses the expression of the MHC class I HC in addition to binding to its HC 

and preventing its transport through the Golgi (Marchetti et al., 2005, Marchetti 

et al., 2002). The total amount of cellular MHC class I can be increased by 

treatment with IFN but the expression on the cell surface cannot be rescued 

(Araibi et al., 2004). This implies that the E5 proteins disturb the correct 

trafficking of the HLA/MHC class I molecules to the cell surface. Further 

research is needed to identify the exact mechanism of E5 mediated HLA/MHC 

class I cell surface down-regulation.  

 

Further studies revealed the down-regulation of HLA class II molecules (Zhang 

et al., 2003) as well as CD1d (Miura et al., 2010) by 16E5 which are likely to 

contribute to immune evasion. Thus, E5 employs multiple strategies to prevent 

detection by the host’s immune system. 
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In summary, the E5 proteins are multifunctional oncoproteins that play roles in 

host cell transformation, the PV life-cycle and viral immune evasion, but the 

precise mechanisms employed by the E5 proteins are still poorly understood. It 

is striking that most functions of E5 are mediated by alterations to the cellular 

trafficking system. E5 modifies not only the endocytosis of receptors 

responsible for mitogenic signalling (EGF-R) but also decreases the exocytosis 

of immune modulators (HLA class I and II, CD1d) or increases the exocytosis of 

lipid raft components (caveolin-1, ganglioside GM1). Further research is needed 

to determine how E5 mediates these functions.  
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1.7. Work leading to this project  

The E5 proteins do not have an intrinsic enzymatic function so they exert their 

roles in the host by interacting with cellular proteins. A yeast two-hybrid (Y2H) 

screen was performed with the E5 protein of the clinically most relevant HPV16 

to determine further cellular binding partners (Gundurao and Haas, University of 

Edinburgh, UK). In a semi-automated Y2H assay (Albers et al., 2005), the 16E5 

bait was screened against a human testis epithelial cell and a HeLa cell library, 

respectively. This resulted in the identification of eight potential 16E5 interacting 

proteins (Table 1.2). The zinc transporter ZnT-1 identified in the human testis 

cell library is already confirmed as a 16E5 interaction protein (Lazarczyk et al., 

2008), thus serving as a positive control for this assay.  

 

Table 1.2 Binding partners of 16E5 identified by Y2H screen against a human testis and HeLa 

cell library. The Y2H screen was performed by Gundurao and Haas, University of Edinburgh, 

UK. 

UniProt ID protein name (abbreviation) 

Q13200 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) 

Q96JQ2 calmin (CLMN) 

Q96JN2 coiled-coil domain containing protein 136 (CCDC136) 

O76003 glutaredoxin-3 (GLRX3) 

Q9P258 protein RCC2 

Q96J42 thioredoxin domain-containing protein 15 (TXNDC) 

Q9BSR8 YIP1 family member 4 (YIPF4) 

Q9Y6M5 zinc transporter 1 (ZnT-1) 

 

Four of the potential 16E5 biding partners were further investigated with a co-

immuno-precipitation (Co-IP) approach called the luminescence-based 

mammalian interactome mapping (LUMIER) assay (Gundurao and Haas, 

University of Edinburgh, UK). For this, CCDC136, CLMN, YIPF4 and TXNDC 

were tagged with Staphylococcus aureus protein A and served as bait while 

16E5 was tagged with Renilla reniformis luciferase and was used as prey 

(Figure 1.8). The interaction of JUN and FOS served as positive control. Bait 
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and prey were co-expressed in HEK293 cells and their lysates were analysed 

with the LUMIER assay. The bioluminescence was used as read out for 

interaction and normalised interaction signals were Z-transformed. Statistical 

analysis showed significant differences between the 16E5 binding partners and 

the positive control (p ≤ 0.01). However, YIPF4 constituted the most promising 

novel 16E5 binding partner. YIPF4 was also observed as a 16E5 binding 

partner by tandem affinity purification followed by mass spectrometry (Tap-MS) 

analysis using IMR-90 normal human diploid fibroblasts transfected with tandem 

epitope tagged 16E5 (Rozenblatt-Rosen et al., 2012). Thus, YIPF4 is extremely 

likely to be an authentic 16E5 binding partner since the interaction was 

observed in three different experimental approaches. 

  

Figure 1.8 LUMIER assay for 16E5 interactors. The potential 16E5 interactors identified in 

the Y2H screen were tagged with Protein A and used as bait in the LUMIER assay to 

precipitate the Renilla-luciferase tagged 16E5 (schematic drawing). The bioluminescence 

emitted from the luciferase was normalised and Z-transformed to indicate protein interaction. 

The ineracting proteins JUN and FOS served as positive control. The highlighted protein 

YIPF4 (green) was chosen as subject of this PhD project. *p ≤ 0.01. A = Protein A. The 

LUMIER assay was performed by Gundurao and Haas, University of Edinburgh, UK.  
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1.8. YIP1 protein family  

The YIP1 proteins form a highly conserved family of integral membrane proteins 

in eukaryotes (Calero et al., 2002). They are characterised by (I) a common 

domain topology that consist of a hydrophilic N-terminus facing the cytoplasm 

and a hydrophobic C-terminus predicted to form several TMDs (Figure 1.9) (II) 

they interact with Rab GTPases (1.8.1) requiring their dual C-terminal 

prenylation and (III) the family members associate amongst each other (Calero 

et al., 2002, Chen and Collins, 2005b). Phylogenetic analysis of the protein 

family revealed two conserved motifs (P and GY) and a third motif (DLYGP) that 

has variations (ELYGP, DLYIP, DLWGP, DFWGP, DLAGP) (Stolle et al., 2005). 

 

 

Figure 1.9 YIP1 protein membrane topology. This model of mammalian YIPF6 represents 

the characteristic topology of the YIP1 family members: A hydrophilic N-terminus exposed to 

the cytoplasm and a hydrophobic C-terminus predicted to form several TMDs. Adapted from 

Brandl et al., 2012. 
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According to the definition above, the YIP1 family has 4 members in yeast and 

9 members in mammals (Table 1.3). Others also consider Yip2p and Yip3p in 

yeast as well as the prenylated Rab acceptors 1 and 2 (PRA1, PRA2) in 

mammals as members of the YIP1 family (Barrowman et al., 2003, Jin et al., 

2005, Kano et al., 2009, Pfeffer and Aivazian, 2004, Stolle et al., 2005). 

However, their sequences and topology are too dissimilar compared to the 

other YIP1 family members and Yip3p/PRA1 can interact with mono-prenylated 

Rab GTPases which deviates from the YIP1 family criteria (Calero et al., 2002, 

Chen et al., 2004, Chen and Collins, 2005b, Figueroa et al., 2001, Geng et al., 

2005, Heidtman et al., 2005, Shakoori et al., 2003). Thus, in the following, these 

proteins are not considered part of the YIP1 family.  

 

 

Table 1.3 YIP1 family members in yeast and their mammalian orthologues. The table is based 

on reviewed UniProt entries.  

YIP1 family member synonyms mammalian species 

yeast mammals   

Yip1 

YIPF4 FinGER4 
human, bovine, chicken, dog, mouse, rat, rhesus 

macaque 

YIPF5 
FinGER5, 
SMAP-5, 

Yip1A 

human, bovine, crab-eating macaque, dog, mouse, pig, 
rat, Sumatran orang-utan 

YIPF7 
FinGER9, 

Yip1B 
human, bovine, mouse 

Yip4 
YIPF3 FinGER3 human, mouse, rat, 

YIPF6 FinGER6 human, bovine, mouse, rat 

Yip5 
YIPF1 FinGER1 human, mouse, rat, Sumatran orang-utan 

YIPF2 FinGER2 human, mouse, rat 

Yif1p 
YIF1A 

FinGER7, 
54TMp 

human, bovine, mouse 

YIF1B FinGER8 human, mouse, rat 
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1.8.1. Rab GTPases 

Small Rab GTPases belong to the superfamily of Ras GTPases that are known 

to play regulatory roles in membrane trafficking i.e. vesicle budding, movement, 

tethering and fusion (Hutagalung and Novick, 2011). There are 66 different Rab 

GTPases encoding genes in humans and eleven in yeast (called Ypt GTPases) 

(Calero et al., 2001, Garcia-Ranea and Valencia, 1998, Lazar et al., 1997, 

Pfeffer, 2013). The Rab proteins comprise a globular N-terminus that mediates 

binding and hydrolysis of guanosine triphosphate (GTP). Upon translation, the 

Rab GTPases associate with Rab escort proteins (REPs) that mediate binding 

to the Rab geranylgeranyl transferases (RabGGT) (Figure 1.10). These 

covalently attach one or two prenyl groups to unstructured and hypervariable C-

terminal domain of the Rab GTPase. 

 

Rab GTPase proteins function as molecular switches changing between an 

active, GTP-bound state and an inactive, guanosine diphosphate (GDP)-bound 

state (Hutagalung and Novick, 2011, Lee et al., 2009). In the active state, Rab 

GTPases are associated with their specific target membrane recruiting effector 

proteins that execute vesicle budding, movement, tethering and fusion, 

respectively. A Rab GTPase accessory protein called ‘GTPase accelerating 

protein’ (GAP) catalyses the hydrolysis of GTP to GDP and thus converts the 

Rab GTPase into its inactive state. Another accessory protein called ‘GDP 

dissociation inhibitor’ (GDI) binds to the inactive Rab GTPase and extracts it 

from the membrane creating a cytosolic pool of inactive Rab GTPase-GDP-GDI 

complexes. When required, Rab GTPases are recruited back and inserted to its 

target membrane by a membrane ‘GDI displacement factor’ (GDF). GDF 

catalyses the release of GDI and facilitates the access for the ‘guanine 

nucleotide exchange factor’ (GEF) which exchanges GDP for GTP and thus 

converts the Rab GTPase back to its active state. 
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Figure 1.10 The Rab GTPase cycle. Rab GTPases are molecular switches that cycle not 

only between a GTP-bound active state and a GDP-bound inactive state but also between a 

free cytosolic pool and a membrane bound pool. They exert their functions by recruiting 

effector proteins. YIP1 family members are proposed to function as Rab GDFs. For detailed 

description see main text (1.8.1). Adapted from Hutagalung and Novick, 2011. 
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1.8.2. YIP1 proteins in yeast 

1.8.2.1. Yip1p 

The Ypt-interacting protein 1 (Yip1p) is an essential protein in yeast and the 

founder member of the YIP1 family that was first identified 16 years ago (Yang 

et al., 1998). It was confirmed as an integral membrane protein with a 

hydrophilic N-terminus facing the cytoplasm. It is predicted to have 3 TMDs 

towards the C-terminus and localises at the cis-Golgi or cycles between the ER 

and Golgi (Heidtman et al., 2003, Yang et al., 1998).  

 

Yip1p interacts with di-geranylgeranylated and not mono-prenylated Ypt 

GTPases (Calero et al., 2003) in accordance with the YIP1 family criteria. In in 

vitro assays, Yip1p binds a myriad of Ypt GTPases (Ypt1p, Sec4p, Vps21p, 

Ypt6p, Ypt7p, Vps21p, Ypt31p, Ypt51p, Ypt52p, Ypt53p) (Calero et al., 2003, 

Matern et al., 2000, Yang et al., 1998). Besides the requirement for dual-

prenylation, Yip1p preferentially binds the GDP bound form of the Ypt GTPases 

(Yang et al., 1998), although others saw no preference for GTP or GDP bound 

Ypt GTPases (Calero et al., 2003). However, in in vivo assays Yip1p exclusively 

interacts with Ypt GTPases localised at the Golgi like Ypt1p which plays a role 

in anterograde ER to Golgi trafficking as well as Ypt31p that is involved in intra-

Golgi and Golgi to vacuole trafficking (Chen et al., 2004, Yang et al., 1998). 

Yip1p also binds Ypt6p, which is linked to retrograde trafficking from the Golgi 

to the ER indicating a function of Yip1p in ER to Golgi anterograde or Golgi to 

ER retrograde trafficking. Indeed, a defective Yip1p protein results in disruption 

of membrane trafficking and vesicle budding from the ER and the function of 

Yip1p in trafficking events was shown to be dependent on Ypt GTPases and 

their GDIs (Chen et al., 2004).  

 

Because of its integral membrane property, Yip1p is thought to function as GDF 

to recruit the soluble Ypt GTPase/GDI complex from the cytoplasm to the Golgi 

membrane (Chen and Collins, 2005b, Yang et al., 1998). In agreement with this, 

Calero and colleagues observed an increase in the soluble pool of Ypt1p in 

Yip1p defective cells (Calero et al., 2003). Barrowman and colleagues, 

however, did not notice an increase of the soluble Ypt1p pool in Yip1p defective 
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cells and Ypt1p could still associate with its target membrane under these 

conditions (Barrowman et al., 2003). Thus, more research is needed to 

determine whether Yip1p functions as a GDF for Ypt GTPases of the early 

secretory pathway.  

 

Yip1p forms a tetrameric complex consisting of one other YIP1 family member 

Yif1p (YIP1 interacting factor) (1.8.2.2) and the unrelated proteins Yop1p (YIP 

one partner) and Yos1p (Yip one suppressor 1) (Andrulis et al., 1998, Calero et 

al., 2001, Heidtman et al., 2005, Ito et al., 2001, Ito et al., 2000). The interaction 

of Yip1p with the small integral membrane protein Yop1p is mediated by their 

hydrophilic N-termini (Calero et al., 2001). The overexpression of Yop1p causes 

disruption of the early secretory pathway as well as membrane accumulation 

and cell death. It is therefore conceivable that Yip1p and Yop1p mediate a 

common stage in membrane trafficking even because Yop1p was also shown to 

interact with Ypt6p.   

Yos1p is bound by Yip1p and Yif1p (Heidtman et al., 2005). It is a very small 

integral membrane protein that localises to the ER and Golgi and is packed into 

coat protein complex 2 (COPII) transport vesicles. Depletion of Yos1p blocks 

the trafficking between ER and Golgi. The Yip1p/Yif1p/Yop1p/Yos1p complex 

therefore plays a role in the anterograde trafficking from ER to Golgi.  

 

Yip1p is known to function in COPII vesicle trafficking which could be mediated 

by the interaction with Ypt GTPases (Chen and Collins, 2005b). The 

Yip1p/Yif1p complex binds to the ER to Golgi SNARES bet one suppressor 1 

and Sec22p and is thought to promote fusion of ER-derived vesicles to the 

Golgi (Barrowman et al., 2003). Others did not observe an involvement of Yip1p 

in COPII vesicle fusion but rather in COPII vesicle budding from the ER and this 

process was independent of Ypt1p (Heidtman et al., 2003). Also, a role in Golgi 

structure maintenance and function is conceivable. Clearly, further research is 

needed to determine the precise role of Yip1p in intracellular trafficking.  

 

The Yip3p protein which is not a member of the Yip1p family (1.8) interacts with 

Yip1p and binds to Ypt GTPases in vitro in an non-specific manner (Calero and 

Collins, 2002, Ito et al., 2001, Ito et al., 2000). Because the human orthologue 
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of Yip3p, PRA1, interacts with v-SNARES and functions as a Rab GTPase 

GDF, the Yip1p/Yip3p complex could contribute to the regulation of intracellular 

trafficking (Sivars et al., 2003). But further research is needed to allocate a 

function to this protein complex.  

 

The hydrophilic N-terminal domains of Yip1p and Yif1p interact with the phox 

homology domain of proteins, which is a phosphoinositide binding domain 

(Vollert and Uetz, 2004). Amongst these are Grd19p, Vam7p, Vps5p, Vps17p, 

and Ypt35p which are involved in the endocytic pathway. Thus, it is conceivable 

that Yip1p functions in the endocytic trafficking pathway in addition to the 

secretory pathway but this remains to be confirmed.  

 

1.8.2.2. Yif1p 

Yip1p interacting factor Yif1p, is an integral membrane protein with the 

characteristic hydrophilic N-terminus and a hydrophobic C-terminus predicted to 

form three TMDs (Andrulis et al., 1998, Matern et al., 2000). This essential 

protein co-localises with its interaction partner Yip1p at the cis- and medial-

Golgi and in COPII vesicles (Otte et al., 2001). The overexpression of Yif1p can 

compensate for the loss of Yip1p indicating that it might perform similar 

functions as Yip1p (Calero et al., 2002).  

 

Indeed, in a Y2H assay, Yif1p weakly interacted with the Yip1p binding partners 

Ypt1p and Ypt31p (Matern et al., 2000) and is proposed to function as a Ypt 

GTPase GDF (Figure 1.10) (Cardoso and Calonje, 2003, Matern et al., 2000, 

Otte et al., 2001). It is conceivable that Yif1p recruits the Ypt GTPases to COPII 

vesicles to mediate fusion with the target membrane.  

Yif1p interacts with Yip3p and co-localises with it at ER derived vesicles 

(Andrulis et al., 1998, Otte et al., 2001). Also, an interaction with the batten 

disease protein 2 was observed, a protein that is involved in intracellular protein 

transport (Chattopadhyay et al., 2003). Defective Yif1p results in a disruption of 

trafficking between the ER and Golgi whereby ER membranes accumulate and 

the glycosylation in the Golgi is reduced (Matern et al., 2000). Thus, Yif1p as 

part of a larger protein complex plays a role in the early secretory pathway.   
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1.8.2.3. Yip4p and Yip5p 

Yip4p and Yip5p are non-essential proteins and the most recent YIP1 family 

members in yeast. They are predicted to have a hydrophilic N-terminus and 

several C-terminal TMDs (Calero et al., 2002).  

 

In a Y2H assay and a pull down assay they were shown to interact with several 

Ypt GTPases requiring their C-terminus (Calero et al., 2002). Deletion of Yip4p 

and Yip5p did not alter the membrane bound and soluble pool of various tested 

Ypt GTPases which implies that Yip4p and Yip5p do not function as Ypt GDFs 

(Geng et al., 2005). 

 

Yip4p and Yip5p both interact with Yip1p but their overexpression cannot 

compensate for the loss of Yip1p (Calero et al., 2002). This might indicate that 

they exert different functions to Yip1p. An interaction between Yip4p and Yip5p 

and a self-association of Yip4p was also observed. In addition to that, Yip4p 

and Yip5p interact with the Golgi membrane proteins Tvp23 and Tvp18 but the 

functions of these proteins are largely unknown (Inadome et al., 2007).  
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1.8.3. YIP1 proteins in mammals 

A Psi-basic local alignment search tool (BLAST) search identified homologues 

of Yip1p, Yip4p, Yip5p and Yif1p in humans, mice, insects, nematodes and 

plants (Shakoori et al., 2003). In humans, eight YIP1 family members were 

initially detected with the ninth family member YIPF7 only being discovered in a 

homology search for YIPF5 (Stolle et al., 2005) (Table 1.3).  

All human YIP1 family members are predicted to have a hydrophilic N-terminus 

and five TMDs towards the C-terminus (Shakoori et al., 2003). The N-terminus 

domain was shown to face the cytoplasm.  

 

The mRNA of the YIP1 family members was expressed in all tested human 

tissues (heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, 

spleen, thymus, prostate, testis, ovary, small intestine, colon, peripheral blood 

leukocyte) with especially high expression levels in the skeletal muscle and 

testis (Shakoori et al., 2003).  

 

Like for the yeast YIP1 family members (1.8.2), the human YIP1 family 

members are likely to function in cellular trafficking processes but their precise 

functions are still poorly chracterised. 

 

1.8.3.1. YIPF1 and YIPF2 

YIPF1 and YIPF2 are orthologues of the yeast Yip5 protein (Table 1.3) but 

compared to their orthologue (1.8.2.3) they are poorly studied yet. YIPF1 is 

translated from one mRNA but there are two splicing variants of YIPF2 mRNA 

in certain tissues (Shakoori et al., 2003). In a Y2H screen YIPF1 and YIPF2 

were identified as binding partners and both proteins bind YIPF6 and could 

therefore form a trimeric complex. YIPF1 can also bind to itself. The interactions 

are mediated by the TMDs of the proteins, not their hydrophilic N-termini. The 

functions of these potential protein complexes are not known.  
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Interestingly, two single-nucleotide polymorphisms (dbSNP Reference IDs 

(rs6588492 --> A/G and rs6680026 --> C/T) in YIPF1 correlate with a 

susceptibility to treatment with angiotensin II receptor blocker in patients with 

mild/moderate hypertension (Kamide et al., 2013). Whether YIPF1 has a 

causative effect in the susceptibility to treatment with the angiotensin II receptor 

blocker remains to be investigated.  

 

1.8.3.2. YIPF3 and YIPF4 

YIPF3 is the orthologue of Yip4p in yeast (Table 1.3). YIPF3 is translated from 

one mRNA splicing variant while there are multiple splicing variants for its 

paralogue YIPF4 (Shakoori et al., 2003; 3.1.1). In an immuno-fluorescence 

approach, it was confirmed that the hydrophilic N-terminus of YIPF3 faces the 

cytoplasm and the hydrophobic C-terminus the lumen (Tanimoto et al., 2011). 

Both proteins are localised at the cis-Golgi.  

YIPF3 is post-translationally modified (Tanimoto et al., 2011). Its asparagine at 

position 337 is N-glycosylated while the threonines at positions 333, 334, 339 

and 346 are O-glycosylated (Halim et al., 2012a, Halim et al., 2012b, Tanimoto 

et al., 2011). The functional implications of these modifications are not known 

but are likely to be required for protein maturation. Interestingly, glycosylated 

YIPF3 is secreted in the human urine but whether it can serve as a biomarker is 

not yet known (Halim et al., 2012a). 

The YIPF4 protein was detected as a single entity on a Western blot and thus 

post-translational modifications were excluded (Tanimoto et al., 2011). In 

contrast, large-scale mass spectrometry analysis suggests the phosphorylation 

of tyrosines at positions 10 and 60 as well as ubiquitination of lysines at 

positions 47 and 91 (Hornbeck et al., 2004). Further research is needed to 

confirm this and to determine the functions of these potential modifications.  

 

YIPF3 and YIPF4 interact and form protein complexes of four different sizes 

(520kDa, 450kDa, 260kDa, 220 kDa) but the exact stoichiometry or composition 

of these complexes is not known (Tanimoto et al., 2011). Interestingly, small 

interfering RNA (siRNA) mediated knock down of YIPF4 reduces the YIPF3 

expression levels. It is therefore possible that YIPF4 stabilises the YIPF3 
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protein. The knock down of YIPF3 did not alter YIPF4 expression levels but 

rather promoted its localisation to the ER indicating that YIPF3 might be 

responsible for YIPF4 localisation at the cis-Golgi.  

Initially, YIPF4 was identified as a binding partner of the YIP1 family member 

YIF1A in a Y2H assay (Shakoori et al., 2003) but this interaction could not be 

confirmed in a Co-IP assay (Tanimoto et al., 2011) underlining the importance 

of verifying Y2H data.  

 

The knock down of YIPF3 and YIPF4, respectively, results in the fragmentation 

of the Golgi (Tanimoto et al., 2011). Interestingly, this does not affect the 

anterograde transport and the sialylation of test proteins. Even the simultaneous 

knock down of the YIP1 family members YIPF3, YIPF4, YIPF5 and YIPF1A 

does not affect the functionality of the Golgi. Thus, these proteins appear not to 

play an essential role in the regulation of Golgi structure and function.  

 

1.8.3.3. YIPF5 

YIPF5 is the orthologue of yeast Yip1p (Table 1.3). A total of 9 splicing variants 

have been identified for YIPF5 but their role in vivo might be less important 

(Stolle et al., 2005). YIPF5 transcripts were detected in all of 37 tested human 

tissues as well as 5 different human cell types. It is predicted to be transcribed 

from a TATA-box less promoter which is characteristic for housekeeping genes. 

With regard to its ubiquitous expression, YIPF5 is indeed likely to be a 

housekeeping gene (Stolle et al., 2005, Tang et al., 2001). 

 

The YIPF5 protein consists of 257 amino acids and possesses the 

characteristic hydrophilic N-terminus and hydrophobic C-terminus with several 

predicted TMDs (Stolle et al., 2005, Tang et al., 2001). In HeLa cells, YIPF5 

showed ER-like localisation (Shakoori et al., 2003). Others observed a 

juxtanuclear and ER exit site localisation as well as a co-localisation with 

components of COPII vesicles (Tang et al., 2001). Indeed, green fluorescent 

protein (GFP) tagged YIPF5 was used as an ER exit site marker in a study of 

mitosis (Kano et al., 2004). YIPF5 was also detected at the ER - Golgi 

intermediate compartment (ERGIC) (Dykstra et al., 2010, Kano et al., 2009, 
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Yoshida et al., 2008) and the cis-Golgi (Kano et al., 2009, Stolle et al., 2005, 

Yoshida et al., 2008). Kano and colleagues observed YIPF5 localisation at the 

trans-Golgi (Kano et al., 2009) but Yoshida and colleagues excluded its 

localisation at the medial- or trans-Golgi (Yoshida et al., 2008). Because 

different studies observed YIPF5 at various locations between the ER and the 

Golgi, it is likely that YIPF5 cycles between the ER and Golgi.  

 

YIPF5 interacts with the YIP1 family member YIF1A (1.8.3.5) and forms protein 

complexes of three different sizes (320 kDa, 160 kDa and 120 kDa) but the 

stoichiometry and composition of these complexes is not known (Dykstra et al., 

2013, Yoshida et al., 2008). Knock down of YIPF5 reduced the expression 

levels of its interaction partner YIF1A and vice versa. It is conceivable that the 

proteins stabilise each other in those complexes. YIPF5 also interacts with the 

mammalian homologue of Yop1p (1.8.2.1), DP1 and the related DPL1, but a 

function was not allocated to these protein complexes (Dykstra et al., 2010).  

 

Independent of binding to YIF1A and DP1, YIPF5 plays a role in ER network 

organisation (Dykstra et al., 2010, Dykstra et al., 2013, Yoshida et al., 2008). 

Knock down of YIPF5 resulted in rearrangement of the ER into stacked and 

concentrically whorled structures. The glutamic acid at position 95 and the 

neighbouring leucines at positions 91 and 96 of the N-terminal domain and the 

lysine at position 146 and the valine at position 152 of the C-terminal domain 

are crucial for the correct organisation of the ER (Dykstra et al., 2013).  

Interestingly, others did not observe a disruption of the ER network upon YIPF5 

knock down but a fragmentation of the Golgi (Dykstra et al., 2010, Yoshida et 

al., 2008) and Kano and colleagues did not detect any alterations in ER, ERGIC 

and Golgi morphology (Kano et al., 2009). This might be due to different knock 

out efficiencies in the individual experiments.  

 

YIPF5 binds to the COPII components Sec23 and Sec24 via its highly 

conserved amino acids 75 – 106 and is efficiently packaged into COPII 

transport vesicles (Tang et al., 2001). In agreement with this, YIPF5 knock 

down disrupted the ER to Golgi trafficking. Dykstra and colleagues, however, 

only saw a delay and not a disruption of the secretory trafficking in YIPF5 knock 



68 

 

down cells (Dykstra et al., 2010) and others could not detect an involvement of 

YIPF5 in anterograde transport (Kano et al., 2009, Yoshida et al., 2008). 

Interestingly, the treatment of vascular smooth muscle cells with the 

transforming growth factor β-1 elevated the expression of YIPF5 (Stolle et al., 

2005). YIPF5 could therefore play a role in the secretion of components of the 

extracellular matrix.  

 

YIPF5 might also function in retrograde transport. The knock down of YIPF5 

decreased the rate of COPI-independent but not the COPI-dependent 

retrograde transport between the Golgi and ER (Kano et al., 2009). This was 

caused by the reduced recruitment of Rab6 GTPase to the membranes. 

However, YIPF5 does not bind to Rab6 and is therefore unlikely to function as 

its GDF (Figure 1.10). Further research is needed to determine the precise role 

of YIPF5 in anterograde and retrograde trafficking. 

 

1.8.3.4. YIPF6 and YIPF7 

YIPF6 is the orthologue of the yeast Yip4 protein and YIPF7 is the orthologue of 

Yip1 protein (Table 1.3). YIPF6 mRNA is expressed ubiquitously in human and 

mouse tissues and a multitude of splicing variants have been detected on a 

Northern blot (1.8.3) (Brandl et al., 2012, Shakoori et al., 2003). In contrast, 

YIPF7 was only discovered after the initial identification of the YIP1 family in 

mammals (Shakoori et al., 2003, Stolle et al., 2005) and murine YIPF7 is 

exclusively expressed in the heart (Tang et al., 2001). It therefore forms an 

exception from the otherwise ubiquitously expressed YIP1 proteins. 

Overexpressed murine YIPF6 localises to the cis- and trans-Golgi (Brandl et al., 

2012). It also co-localises with the COPII component Sec31a and could 

therefore play a role in anterograde ER to Golgi transport.  

 

In a Y2H assay, YIPF6 interacted with YIPF1 and YIPF2 with the interaction 

being mediated by their hydrophobic C-terminal domains (Shakoori et al., 

2003). The binding of these proteins was, however, not investigated further nor 

was a function allocated. Interestingly, a thymine to adenine transversion in the 

YIPF6 gene in mice correlated with intestinal inflammation (Brandl et al., 2012). 
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The mutation leads to the skipping of intron 4 during splicing and results in a 

frameshift with a premature stop codon. The expression of WT YIPF6 in these 

mice rescues the intestinal inflammatory phenotype. The responsible 

mechanism was not determined.  

 

1.8.3.5. YIF1A 

YIF1A is the orthologue of yeast Yif1 protein (Table 1.3). There is only one 

splicing variant known in human tissues (Shakoori et al., 2003). The YIF1A 

protein was predcited to have 4 - 5 TMDs and its hydrophilic N-terminus was 

shown to face the cytoplasm (Jin et al., 2005, Kuijpers et al., 2013). It localises 

to the ER (Kuijpers et al., 2013), the ERGIC (Breuza et al., 2004, Kuijpers et al., 

2013), and the cis- and trans-Golgi (Jin et al., 2005) and was indeed shown to 

cycle between the ER and Golgi (Breuza et al., 2004, Kuijpers et al., 2013).  

 

In a Y2H assay, YIF1A bound to YIPF4 (Shakoori et al., 2003), however, this 

could not be confirmed in a Co-IP assay (Tanimoto et al., 2011). In contrast, the 

interaction between YIF1A and YIPF5 is well established (Jin et al., 2005, 

Young, 1998) and could function in the maintenance of the Golgi structure, 

although further research is needed to confirm this.  

The TMDs and the N-terminal amino acids 31 – 41 of YIF1A mediate binding to 

the ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) (Akhter et 

al., 2007). This is thought to be involved in COPI vesicle formation by regulation 

of the GTP-binding protein Arf1. Thus, YIF1A is likely to play a role in COPI-

dependent retrograde vesicle transport.  

The first two potential TMDs of YIF1A bind to the single TMD of VAPB (vesicle-

associated membrane protein (VAMP) associated protein B (VAPB)) (Kuijpers 

et al., 2013). Short hairpin RNA (shRNA) interceded knock down of YIF1A in 

neurons resulted in aberrant dendrite morphology since YIF1A mediates the 

transfer of membranes from the soma to dendrites. Thus, YIF1A plays a specific 

role in the dendrite development of neurons. The cellular localisation of YIF1A is 

altered in neurons with the mutant VAPB-P56S allele and could therefore be 

linked to the VAPB-associated motor neuron diseases.  
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1.8.3.6. YIF1B 

YIF1B is an orthologue of the yeast Yif1p protein (Table 1.3). There are several 

YIF1B splicing variants expressed in a variety of human tissues (Shakoori et al., 

2003). Rat YIF1B is 89% identical to human YIF1B and transcripts and proteins 

are expressed in brain, heart, kidney, lung, spleen, muscle and intestine (Carrel 

et al., 2008). It is predicted to have the characteristic hydrophilic N-terminus and 

5 TMDs. The human YIF1B localises to the ER (Shakoori et al., 2003) while the 

rat YIF1B localises to ER and the median-Golgi and the transport vesicles in-

between these organelles (Carrel et al., 2008).  

 

Like YIF1A (1.8.3.5), YIF1B interacts with ArfGAP1 with the tryptophan at 

position 211 being essential for this interaction (Akhter et al., 2007). Therefore, 

YIF1B could play a role in COPI-dependent retrograde vesicle transport. Also, 

YIF1B interacts with VAPB and might be associated with the VAPB-associated 

motor neuron disease (1.8.3.5) (Kuijpers et al., 2013).  

 

YIF1B plays another essential role in neurons. It partially co-localises with the 

serotonin receptor 5-HT1AR in rat hippocampal neurons (Carrel et al., 2008). 

The two proteins interact with high affinity via two aspartic acids at the N-

terminus of YIF1B and three basic amino acids at the C-terminus of 5-HT1AR (Al 

Awabdh et al., 2012). YIF1B promotes the trafficking of 5-HT1AR to the distal 

section of the dendrites (Carrel et al., 2008). Others, however, could not confirm 

the involvement of YIF1B in 5-HT1AR trafficking (Kuijpers et al., 2013). In 

contrast to this, Al Awabdh and colleagues proposed a model of a YIF1B 

trafficking complex for 5-HT1AR (Figure 1.11) (Al Awabdh et al., 2012). Co-IP 

assays and immuno-fluorescence approaches suggest a model where YIF1B 

binds 5-HT1AR and YIPF5 and mediates association with Rab6 GTPase. Rab6 

GTPase facilitates the bi-directional movement on the tubulin cytoskeleton via 2 

motor proteins: Kinesin-1 HC (Kif5B) and dynein. Further research is needed to 

support this first detailed model of YIP1 family member mediated trafficking.  
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In summary, the YIP1 proteins are a family of integral membrane proteins, 

which is highly conserved in eukaryotes. Notably, their characteristic membrane 

topology is largely based on bioinformatic predictions and has not been 

experimentally validated.  

YIP1 proteins play a role in cellular trafficking processes, which could be 

facilitated by their Ypt/Rab GTPase binding partners. Because YIP1 proteins 

are integral membrane proteins they are proposed to function as GDFs for 

those Ypt/Rab GTPases (Figure 1.10) but this remains to be proven.  

YIP1 family members interact with each other and form large protein complexes 

of partially redundant functions, which are not well understood to date. Most 

YIP1 family members are ubiquitously expressed, only YIPF7 expression is 

limited to heart tissue. Because of the high conservation and ubiquitous 

expression, it is conceivable that the YIP1 family members are housekeeping 

proteins but then specific functions in the development and trafficking of 

neuronal receptors have been identified. Also, mutations in some mammalian 

YIP1 proteins correlate with specific clinical disorders. 

Thus, despite their small size and limited number, the YIP1 family members 

play crucial roles in eukaryotic cells. The prospect of YIPF4 interacting with a 

viral protein could be extremely elucidative not only for the YIP1 family but also 

for the pathogenesis of PVs.  

Figure 1.11 YIF1B mediated trafficking of the serotonin receptor 5-HT1AR in dendrites. YIF1B 

functions as a scaffolding protein to assembly the trafficking complex that allows plus-and 

minus-end directed trafficking of 5-HT1AR in dendrites. The dynactin subunit P150 facilitates 

switching between the two trafficking directions. More research is needed to confirm this first 

precise trafficking model of a YIP1 family member. Adapted from Al Awabdh et al., 2012. 
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1.9. Aims and objectives  

Preliminary work suggests that YIPF4 is a new cellular target of the 16E5 

oncoprotein (1.7). The properties and functions of both proteins are only poorly 

understood but it is conceivable that both proteins play roles in cellular 

trafficking pathways. The aim of this PhD study was therefore to characterise 

the potential interaction between 16E5 and YIPF4 and investigate the function 

of this protein complex. To this end, the specific objectives of this study were:  

 

1. To verify and asses the expression of YIPF4 in HPV infected cells and tissue.  

 

2. To produce experimental evidence for the membrane topology of YIPF4 as 

the first representative of the YIP1 family. 

 

3. To confirm the interaction of 16E5 with YIPF4. 

 

4. To investigate the interaction of YIPF4 with E5 proteins of other PV types and 

HPV16 oncoproteins.  

 

5. To allocate a function to the 16E5/YIPF4 protein complex. 
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Chapter 2. Materials and Methods 

2.1. Bacterial cell culture  

2.1.1. Bacteria growth and storage  

The Escherichia coli strain NEB5α (New England BioLabs (NEB), USA) was 

used as host for the amplification of DNA vectors. E. coli were grown on 

semisolid medium (0.75% w/v agar in LB Medium) and in liquid shaking cultures 

(Luri-Bertani (LB) medium: 3% w/v tryptone soya broth, 0.5% w/v yeast extract), 

respectively, overnight (o/n) at 37°C. Appropriate antibiotics were added for 

selection (50 μg/μl Kanamycin, 100 μg/μl Ampicillin). Semisolid cultures were 

stored for short periods of time at 4°C. For long-term storage, cells were frozen 

at -80°C in freezing medium (23% glycerol in liquid o/n culture). 

 

2.1.2. Preparation of chemically competent bacteria  

Ultra competent NEB5α cells were prepared according to the Inoue Method 

(Sambrook and Russell, 2006). Briefly, single colonies were grown in SOB-

medium (2% peptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, pH 7.5, 

autoclaved) at 18°C to an optical density measured at 600 nm (OD600) of 0.6. 

The culture was incubated on ice before harvesting the cells by centrifugation at 

2500 x g for 10 min at 4°C. Cells were washed once in transformation buffer (10 

mM PIPES, 15 mM CaCl2, 250 mM KCl, 55 mM MnCl2, pH 6.7, filter sterilised). 

Cells were resuspended in ice-cold transformation buffer and dimethyl 

sulphoxide (DMSO) was added to a final concentration of 7%. Aliquots were 

prepared which were frozen at -80°C for long-term storage.  

 

2.1.3. Transformation of competent bacteria with plasmid DNA  

Transformation of NEB5α cells was based on the method described by 

Hanahan (Hanahan, 1983). Plasmid DNA (2 μl) was added to 50 μl of 

competent NEB5α (2.1.2) cells and incubated on ice for 20 min. Cells 
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underwent heat shock treatment at 42°C for 30 sec. Cultures were incubated on 

ice for 2 min followed by the addition of 200 μl of LB medium and an 1 h 

incubation at 37°C shaking at 180 rpm. The cultures were streaked out onto 

selective semisolid medium (2.1.1). 

 

2.1.4. Preparation of plasmid DNA  

2.1.4.1. Small scale preparation  

To purify plasmid DNA on a small scale, 5 ml of selective LB medium were 

inoculated with a single colony previously grown on semisolid medium. The 

culture was shaken o/n at 37°C. Cells were harvested by centrifugation of 2 ml 

of culture for 5 min at 16100 x g. The plasmid DNA was purified using the 

sodium dodecyl sulphate (SDS)-alkaline denaturation method employed by the 

Wizard® Plus SV Minipreps DNA Purification System (Promega, UK). 

Purification was conducted according to the manufacturer’s protocol. DNA was 

eluted from the Wizard® SV Minicolumns with 30 μl ddH20. 

 

2.1.4.2. Large-scale preparation  

To purify plasmid DNA on a larger scale, a starter culture was prepared by 

inoculating 2 ml of selective LB medium with a single colony grown on semisolid 

medium. The culture was shaken for 4 h at 37°C and diluted (1:500) in 100 ml 

of selective LB medium. This large-scale culture was shaken o/n at 37°C. Cells 

were harvested by centrifugation at 6000 x g for 15 min at 4°C. The plasmid 

DNA was purified using the Plasmid Maxikit (Qiagen, Germany) according to 

the manufacturer’s protocol. Plasmid DNA was resuspended in 100 μl – 300 μl 

ddH2O.  

 

The concentration of the plasmid DNA was determined using a Nanodrop 

spectrophotometer (Thermo Fisher Scientific, USA).  
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2.2. Molecular Cloning 

2.2.1. Plasmid DNA vectors and oligonucleotides 

See Table A. 1 and Table A. 2 in Appendix.  

 

2.2.2. Polymerase chain reaction 

The polymerase chain reactions (PCR) were performed based on the method 

developed by Mullis and colleagues (Mullis et al., 1986). Amplifications of the 

target sequences were conducted using a KOD DNA polymerase (Merck, UK) 

in a 50 μl reaction volume containing: 1 x KOD DNA Polymerase Buffer, 1 unit 

KOD DNA Polymerase, 200 μM dNTP, 2.5 nM MgCl2, 10% DMSO, 100 pmol 

forward and reverse primer (Table A. 1 and Table A. 2), respectively and 100 – 

500 ng DNA template. The reactions were conducted in a MJ research PTC-

200 Thermal Cycler (GMI) according to the following protocol: hot start for 60 

sec at 94°C followed by 30 - 40 cycles of denaturation for 20 sec at 95°C, 

annealing for 20 sec and elongation at 74°C. The annealing temperature and 

elongation time were adjusted according to the melting temperature (TM) of the 

oligonucleotides and length of target sequence, respectively (Table A. 1 and 

Table A. 2). The amplification products were purified from the reaction using the 

Qiaquick PCR purification kit (Qiagen, Germany) according to the 

manufacturer’s protocols. DNA integrity was verified by agarose gel 

electrophoresis (2.2.3). 

 

2.2.3. Agarose gel electrophoresis 

PCR amplification products and restriction digest products were separated by 

agarose gel electrophoresis. For this, a 1.6% agarose gel was prepared (1.6% 

w/v agarose in TAE (40 mM Tris base, 20 mM Acetic acid, 1 mM EDTA)) with 

the addition of 1 x SYBR safe DNA gel stain (Invitrogen, USA). Gel loading dye 

(5 x: 10% Glycerol, Orange G in TAE) was added to the samples to obtain a 1 x 

final concentration. Electrophoresis was carried out at 180 V for 37 min in TAE 

buffer. The agarose gel was viewed and documented using a Syngene 

InGenius gel documentation system (Syngene Bioimaging, UK).   
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2.2.4. Restriction enzyme digestion 

Purified PCR amplification products and destination vectors were digested with 

two high fidelity enzymes (NEB, USA). In a reaction volume of 30 μl, 1 μg of 

DNA was digested with 10 units of enzyme I and enzyme II (Table A. 1 and 

Table A. 2), respectively in 1 x NEB Buffer 4. Samples were incubated for 1 h at 

37°C.  

 

2.2.5. Antarctic Phosphatase treatment of destination vectors 

Linearised destination vectors were treated with 1 unit Antarctic Phosphatase 

(NEB, USA) for 30 min at 37°C followed by inactivation at 65°C for 5 min. 

 

2.2.6. DNA ligation reactions 

Ligations of PCR amplification products into their destination vectors were 

accomplished using T4 DNA ligase (NEB, USA). In a total volume of 10 μl, 400 

units of T4 DNA ligase in 1 x T4 DNA ligase buffer were used to ligate a PCR 

amplification product and a destination vector in a ratio of 3:1. The ligation 

reaction was incubated for 30 min at room temperature (RT). Ligation products 

were transformed into competent NEB5α cells (2.1.2). 

 

2.2.7. Screening clones and sequencing 

The integrity of the sequences of all clones prepared for this project was 

confirmed by sequencing. All sequencing reactions were conducted by GATC-

Biotech (Germany) using provided vector-specific sequencing primers. The 

resulting DNA sequences were analysed with the online accessible Basic Local 

Alignment Search Tool (BLAST; National Center for Biotechnology Information, 

USA) and a pairwise alignment tool (European Molecular Biology Laboratory – 

European Bioinformatics Institute, EMBL-EBI, UK). Sequences were formatted 

using ‘DNATools’ (Department of Biology, Southeast Missouri State University, 

USA).  
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2.2.8. Basic bioinformatics 

The molecular weights of 16E5 and YIPF4 truncation mutants (Table A. 1, 

Table A. 2) were predicted using the Protein Molecular Weight Calculator 

(Science Gateway, USA). 

 

Multiple sequence alignments of YIPF4 sequences from various species (Table 

A. 3) were aligned using the ClustalW2 online tool (EMBL-EBI, UK).  

 

The YIPF4 gene sequence (NT_022184.15|:11324845-11353545) was 

searched for the HPV E2BS (ACCN6GG, (Hines et al., 1998)) using the ‘pattern 

search’ function of GeneQuest (DNASTAR, USA). Sequence logos of the 

potential E2BSs were generated with the WebLogo tool (Crooks et al., 2004).  

 

The membrane topology of YIPF4 (UniProt ID: Q9BSR8) was predicted using 

the SOSUI online tool (Hirokawa et al., 1998, Shakoori et al., 2003).  

 

2.3. Protein Biochemistry 

2.3.1. Bicinchoninic acid assay for protein concentration 

determination 

Protein concentrations of mammalian cell lysates were determined with a 

detergent-compatible bicinchoninic acid (BCA) protein assay kit (Thermo Fisher 

Scientific, USA) according to the manufacturer’s protocol for microplates. 

Briefly, a series of standard dilutions (0 μg/ml – 2 μg/ml) of bovine serum 

albumin (BSA) was prepared using the lysis buffer of the samples. Mammalian 

cell lysates were diluted 1:10 and 1:100. The BSA standards and the diluted 

samples were added into a 96-well plate in duplicates and the BCA working 

reagent was added. After 10 min incubation at RT, the absorbance at 562 nm 

was determined on a PowerWave XS2 Microplate Spectrophotometer (BioTek, 

UK). A standard curve was generated using the accompanying software (Gen5 

1.07.5, BioTek, UK) to determine the samples’ total protein concentration taking 

into account the dilution factor.  
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2.3.2. SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were separated according to molecular weight using a minigel system 

(BioRAD, USA). 10%, 12%, 13.5% and 15% SDS-polyacrylamide gels were 

prepared according to required protein resolution (separating gel: 10%; 12%, 

13.5%; 15% Acrylamide, 375 mM Tris/Cl, pH 8.8; 0.1% SDS, 0.1% APS, 0.01% 

TEMED; stacking gel: 6% Acrylamide, 125 mM Tris/Cl, pH 6.8; 0.1% SDS, 0.1% 

APS, 0.01% TEMED). Protein samples, 30 µl, with lithium dodecyl sulphate 

(LDS) sample buffer (Invitrogen, USA) and 0.1% 2-mercapoethanol, were 

loaded alongside 5 μl SeeBlue prestained protein marker (Invitrogen, USA) or 

ColorPlus Prestained Protein Marker (NEB, USA). Electrophoresis was carried 

out at 100 - 120 V in 1 x SDS running buffer (34.7 mM SDS, 250 mM Tris Base, 

1.92 M Glycine) until the desired protein resolution was achieved. 

 

2.3.3. Western blot analysis 

Separated proteins were transferred from the SDS-polyacrylamide gels to 

HybondTM-C Extra mixed ester nitrocellulose membranes (Amersham 

BioSciences, UK) on a semi-dry Transfer Cell (BioRAD, USA) or a wet transfer 

XCell II™ Blot Module (Invitrogen, USA). For this, the membranes were 

equilibrated in transfer buffer (192 mM Glycine, 25 mM Tris Base, 20% 

methanol) before conducting the semi-dry transfer at 15 V for 45 – 60 min and 

the wet transfer at 30 V for 60 – 150 min according to protein size. Membranes 

were then blocked by incubation in blocking solution (5% Marvel dried skimmed 

milk in TBS-T (TBS: 25 mM Tris/Cl, pH 7.5; 138 mM NaCl and 0.1% Tween-20)) 

for at least 30 min at RT. Primary antibody (Table A. 4) diluted in blocking 

solution was added to the membrane and incubated o/n at 4˚C on a shaking 

platform or alternatively for 1 h at RT. Membranes were then washed briefly 

with TBS-T at RT. The secondary antibody, which is conjugated to horseradish 

peroxidase (Table A. 5), was diluted in blocking solution (1:5000) and incubated 

for 1 – 3 h at RT. The membranes were washed 3 x 10 min in TBS-T. To detect 

the chemiluminescent signal, membranes were briefly incubated in equal 

amounts of enhanced chemiluminescent solution 1 (2.5 mM Luminol, 40 nM p-

coumaric acid, 100 mM Tris/Cl, pH 8.5) and solution 2 (0.02% H2O2, 100 mM 
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Tris/Cl, pH 8.5) or SuperSignal West Femto Chemiluminescent Substrate 

(Thermo Fisher Scientific, USA). Membranes in a protective sleeve were 

exposed to CL-Xposure film (Thermo Fisher Scientific, USA) or Amersham 

Hyperfilm ECL (GE Healthcare, UK) for an appropriate length of time. The film 

was automatically developed using a table top processor (Konica SRX-101A) 

with few exceptions of manually development. The Blot Restore Membrane 

Rejuvination kit (Millipore, UK) was used according to the manufacturer’s 

instructions to allow reprobing of the membrane (see above). 

 

2.3.4. Densitometry analysis of Western blots 

Western blot films (2.3.3) were digitalised by scanning on an Epson Perfection 

V600 Photo Scanner as a 24 bit image and a resolution of 600 dpi. Protein 

levels were quantified using ImageJ (National Institutes of Health, USA). For 

this, the Western blot images were inverted and protein bands were selected 

with a square. The same square surface was selected for every protein band. 

Band intensity was determined with the ‘measure’ function. Areas of the film 

with no protein bands were measured and deducted as background. The 

resulting data was entered into OriginPro8.6 (MicroCal Inc., USA) to perform a 

one-way analysis of variance (ANOVA).  

 

2.4. Mammalian cell culture 

2.4.1. Cell lines and their maintenance 

Mammalian cell lines (Table 2.1) were maintained in Dulbecco’s modified Eagle 

medium (DMEM; Lonza, Switzerland) supplemented with 10% foetal bovine 

serum (FBS; GIBCO, UK) and 50 U/ml penicillin and streptomycin (Lonza, 

Switzerland), respectively. Huh7 cell medium was additionally supplemented 

with 1 x non-essential amino acids (HyClone, USA). All cell lines were typically 

kept in 75 cm3 flasks (Sarstedt, Germany) and grown in a CO2 incubator 

(Sanyo, USA) at 37°C and 5% CO2.  

All cell culture work was conducted in an Airstream Class II Biological Safety 

Cabinet (ESCO, UK).  
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Table 2.1 Mammalian cell lines used in this study. 

cell line organism cell types and comments 

BHK-21 
Mesocricetus auratus 

(syrian golden hamster) 
fibroblast-like cells derived from kidney 
tissue 

C33A Homo sapiens (human) 
epithelial cells, derived from cervical cancer 

biopsies 

CaSki Homo sapiens (human) 

cervical epithelial cells from metastatic site: 
small intestine; epidermoid carcinoma, 
reported to contain integrated HPV16 (~600 
copies per cell) as well as sequences 
related to HPV18 

Cos-7 
Cercopithecus aethiops 

(vervet monkey) 

kidney fibroblast-like cell line transformed 

with SV40 T antigen 

HaCaT Homo sapiens (human) in vitro spontaneously transformed 
keratinocytes from histologically normal 
skin 

HEK293T Homo sapiens (human) epithelial kidney cells expressing the 
transforming gene of adenovirus 5 

HeLa Homo sapiens (human) 
epithelial cells from cervical 

adenocarcinoma, have been reported to 

contain HPV18 sequences 

Huh7 Homo sapiens (human) epithelial-like cells derived from liver 

carcinoma 

Saos-2 Homo sapiens (human) bone tissue of osteosarcoma patient, 

epithelial morphology 

SiHa Homo sapiens (human) 
epithelial cells of cervical SCC, reported to 

contain integrated HPV16 genomes (~1 - 2 

copies per cell) 

U-2 OS Homo sapiens (human) bone tissue of osteosarcoma patient, 

epithelial morphology 

Vero 
Cercopithecus aethiops 

(vervet monkey) 
SV40 T antigen un-transformed kidney cells 

3T3 J2 Homo sapiens (human) fibroblasts 
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2.4.2. Passaging of cell lines 

Cells were passaged when the monolayers reached 80% - 90% confluence. For 

passaging, medium was aspirated off and cells were washed once with sterile 

phosphate buffered saline (PBS; Oxoid, UK). To detach cells from the culture 

flask, 1 x TrypLETM Express (GIBCO, UK) was added and incubated at 37°C, 

5% CO2 until cells were dislodged. TrypLETM Express was inactivated by 

addition of 9 ml complete DMEM. If required, cells were counted using a 

haemocytometer. All cell lines were split in a ratio of 1:10 and 1:5.  

 

2.4.3. Freezing and thawing of cells 

Cells were harvested for long term storage from an 80% - 90% confluent flask 

as described (0). The cell suspension was centrifuged at 420 x relative 

centrifugal force (RCF), 4°C for 5 min and the supernatant removed. The cell 

pellet was resuspended in 5 ml freezing medium (10% DMSO in FBS). Aliquots 

of 1 ml were transferred to cryogenic tubes (Cole-Parmer, UK), which were 

placed into a Mr. Frosty Cryo 1°C Freezing Container (Nalgene, UK) for 

stepwise temperature reduction to -80°C. For long-term storage cells were kept 

at -80°C.  

For recovery, the cryogenic tubes were incubated at 37°C until cell suspension 

was thawed. Cells were transferred into 5 ml of complete DMEM and 

centrifuged 420 x RCF, 4°C for 5 min. The supernatant was removed and the 

cell pellet resuspended in 13 ml complete DMEM and transferred to 75 cm3 

flasks. Cells were maintained as described (2.4.1, 2.4.2). 

 

2.4.4. Transient transfections with polyethylenimine 

HEK293T cells were seeded into 10 cm cell culture dishes (Corning, USA) at a 

density of 2 x 105 cells/ml and incubated o/n at the afore-mentioned conditions 

(2.4.1). Plasmid DNA (10 µg) was added to 1 ml of 1 x Opti-MEM I Reduced 

Serum Medium - with GlutaMAX™ I (GIBCO, UK) in a polysterene round-

bottom test tube (BD Falcon, UK). After 5 min incubation at RT, 20 μg of the 

chemical transfection reagent polyethylenimine (PEI in H2O, pH 7.4; 
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Polysciences, UK) (DNA:PEI ration = 1:2) was added and incubated for a 

further 20 - 40 min at RT. For co-transfections of two plasmids, 10 µg of each 

plasmid was incubated with 40 µg of PEI in 1 ml 1x Opti-MEM I Reduced Serum 

Medium. Complete DMEM in culture dishes was replaced with Opti-MEM I 

Reduced Serum Medium - with GlutaMAX™ I and the DNA-PEI mixture was 

added dropwise. Cells were incubated for 16h – 24h as described (2.4.1). The 

expression of enhanced GFP (eGFP)-fusion proteins was confirmed by 

epifluorescence microscopy (Nikon Eclipse TS 100) before processing the cells. 

 

2.4.5. Transient transfections with Lipofectin  

SiHa cells were seeded into 6-well dishes (Sarstedt, Germany) at a density of 1 

x 105 cells/ml and incubated for 48 h at the afore-mentioned conditions (2.4.1). 

To transiently transfect, 5 µl of Lipofectin (Invitrogen, USA) were diluted in 100 

µl of 1 x Opti-MEM I Reduced Serum Medium and 1 µg of DNA were dispensed 

separately in 100 µl 1 x Opti-MEM I Reduced Serum Medium. For co-

transfections a total of 2 µg of DNA and 10 µl of Lipofectin per well were used. 

Both mixtures were incubated at RT for 40 min before combining them and 

incubating for another 20 min at RT. Celle were washed once with PBS and 

were grown in 1 x Opti-MEM I plus transfection mixture for 16 h before they 

were harvested for lysis (2.4.8), immuno-fluorescent analysis (2.6) or functional 

analysis (2.11).  

 

2.4.6. Transfection of siRNA with HiPerFect Transfection reagent 

SiHa cells were plated into 6-well dishes at a density of 1 x 105 cells/ml and 

incubated for 48 h. Under RNase free conditions, cells were transfected with 4 

FlexiTube siRNA (Table 2.2) (Qiagen, Germany) specifically targeted to YIPF4 

and an AllStars negative control siRNA (siRNA NC) (Qiagen, Germany), 

respectively, as follows: per well of transfection, 300 ng of siRNA and 12 µl 

HiPerFect transfection reagent (Qiagen, Germany) were dissolved in 100 µl 

Opti-MEM I Reduced Serum Medium. The transfection mixture was briefly 

mixed and incubated at RT for 15 min. It was then added to the cells in fresh 

complete DMEM. Cells were harvested and lysed (2.4.8) at 0 h, 16 h, 24 h, 40 
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h, 48 h and 72 h post-transfection. Cleared cell lysate was subject to BCA 

assay (2.3.1) and Western blot analysis (2.3.2, 2.3.3) to determine knock down 

efficiencies. Cells treated with YIPF4 specific siRNA under the most efficient 

conditions were analysed by flow cytometry (2.11) 

 

Table 2.2 FlexiTube siRNA specific to YIPF4. The sequences were searched with the BLASTN 

online tool (NCBI, USA) and unspecific targeting of other cellular proteins was excluded. 

name siRNA sequence alignment with YIPF4 sequence [bp] 

siRNA1 aagcacctggattggtaatta 1301-1321 → NCR 

siRNA3 agggtggtctcatggattata 670-690 → CR 

siRNA4 aagaattggacattgatctaa 503-523 → CR 

siRNA5 taagtggtacttctaaatcat 1842-1862 → NCR 

NCR = non-coding region, CR = coding region 

 

2.4.7. Determination of protein half-life using cycloheximide  

U-2OS cells were plated into a 6-well dish at a density of 1 x 105 cells/ml and 

incubated under standard conditions (2.4.1) for 24 h. Complete DMEM was 

supplemented with 100 µg/ml cycloheximide (Sigma, USA) and cells were 

incubated under afore-mentioned conditions (2.4.1). Cells were harvested at 0 

h, 6.5 h, 24 h, 30 h, 48 h and 72 h of cycloheximide treatment and lysed and 

analysed as described (2.4.8, 2.3).  

 

2.4.8. Harvesting of cells and lysis 

Cells in 6-well dishes were harvested by incubation with 0.5 ml 1 x TrypLETM 

Express at 37°C after washing with PBS until cells lifted off the dish. To 

neutralise the 1 x TrypLETM Express, 1 ml of complete DMEM was added and 

cell suspension was transferred to a centrifugation tube. Cell pellet was 

obtained by centrifugation at 400 x g and 4°C and was washed once with PBS 

before it was used for RNA extraction (2.10.1), functional analysis (2.11) or 

lysis. To lyse, 100 µl lysis buffer (10 mM Tris/Cl, pH7.5; 150 mM NaCl, 0.5 mM 

EDTA, 0.5% NP40, 1 x Protease inhibitor cocktail, EDTA-free (Roche, 
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Switzerland)) was added and incubated on ice for 30 min with frequent, 

extensive vortexing. Unwanted cell debris was removed by centrifugation at 

17000 x g for 15 min at 4ºC. The pellets were discarded.  

To lyse cells from a 10 cm dish, medium was aspirated off the cells and washed 

once with PBS. PBS was replaced by ice-cold lysis buffer and cells were 

scraped into solution, incubated on ice and cell lysate cleared as described 

above.  

The total protein content of the cleared cell lysates was determined by BCA 

assay (2.3.1) before it was further analysed by SDS-PAGE (2.3.2) and Western 

blot analysis (2.3.3).  

 

2.4.9. Vaccinia virus VTF7-3 expression system 

2.4.9.1. Recombinant vaccinia virus VTF7-3 stock preparation 

BHK-21 cells were plated into 60 mm dishes (Corning, USA) at a density of 5 x 

105 cells/ml and incubated o/n. A recombinant vaccinia virus stock (VTF7-3 with 

a T7 RNA polymerase gene), kindly provided by Dr Cheryl Walter, University of 

Leeds, UK, was diluted in PBS to obtain a multiplicity of infection of 1 when 

added to the cells. The virus was absorbed during 1 h of incubation with 

occasional shaking. Two millilitre of minimum essential medium (MEM; Sigma, 

USA) plus supplements was added and the cells incubated until an extensive 

cytopathic effect became visible which usually took 3 to 4 days. Cells were 

transferred to a centrifugation tube and centrifuged at 17000 x g for 5 min. The 

pellet was resuspended in 2 ml of Tris/Cl, pH 8.8 and snap frozen with liquid 

nitrogen. To obtain the cell-associated virus, cells were thawed and sonicated 

for 2 min. The freeze-thaw-sonication cycle was repeated 5 x before cell debris 

was spun down at 17000 x g for 5 min. Supernatant was saved on ice and pellet 

was resolved in 0.5 ml Tris/Cl followed by another freeze-thaw-sonication cycle. 

The cell debris was spun down again and this supernatant combined with the 

previous supernatant saved on ice and stored at -80˚C until use. 
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2.4.9.2. Plaque assay for virus titre determination 

BHK-21 cells were seeded into a 6-well plate and grown to 80% confluence. 

Media was removed and 2 ml of MEM plus 10% FBS added containing the 

following dilutions of the supernatant containing VTF7-3 (2.4.9.1): 5 x 10-6, 5 x 

10-7 and 5 x 10-8. Cells were incubated for 1 h with frequent gentle shaking and 

then for further 48 h without shaking. Cells were then stained with 1 x Gentian 

Violet (1% w/v crystal violet, 4% v/v formaldehyde, 5% v/v ethanol in PBS) for 

15 min at RT. After rinsing with H2O, plaques could be counted and virus titre 

determined.  

 

2.4.9.3. Infection and transfection of BHK-21 cells for virus mediated 

protein expression 

BHK-21 cells were plated into 60 mm dishes and grown to a confluence of 70% 

– 90%. To recover the VTF7-3 virus from its -80°C storage, the vials were 

rapidly thawed at 37°C and sonicated for 2 min. For infection of BHK-21 cells, 

VTF7-3 virus was diluted in PBS to 5 plaque forming units per cell and added to 

the cells for a 50 min incubation with gentle shaking every 10 min.  

The subsequent transient transfection was carried out with Lipofectin, as 

described elsewhere (2.4.5). Briefly, 1 ml of 1 x Opti-MEM I Reduced Serum 

Medium - with GlutaMAX™ I (GIBCO, UK) was dispensed in a polysterene 

round-bottom test tube (BD Falcon, UK). Twenty-two microliter of Lipofectin 

(Invitrogen, USA) transfection agent were added and the mixture left at RT. Two 

to four micrograms of DNA per plasmid were dispensed in a 1.5 ml Eppendorf 

tube, which was diluted with 500 µl Opti-MEM with GlutaMAX. The DNA was 

then added to the round-bottom test tubes and incubated for 15 min at RT after 

shaking gently. The virus was aspirated off and the cells were washed 2 x with 

2 ml of Opti-MEM with GlutaMAX. The transfection mixtures from the round-

bottom tubes were added to the cells and incubated for 20 h - 24 h. Cells were 

lysed and analysed as described above (2.4.8, 2.8.2).  
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2.5. Human foreskin keratinocytes (HFKs) 

Primary HFKs (Table 2.3) were obtained from Dr Sally Roberts, University of 

Birmingham, UK. HFK cell lines stably transfected with the HPV18 genome 

(WT) and HPV18 genome with a stop codon following the E5 ORF start codon 

(E5 KO) were prepared by Drs Christopher Wasson and Rebecca Ross, 

University of Leeds, UK (Table 2.3). The presence of the stop codon was 

confirmed by sequence analysis (2.2.7). 

 

Table 2.3 Human foreskin keratinocyte cell lines used in this study 

name description 

HFK HPV18_1 WT 
HFKs of donor 1,  

transfected with WT HPV18 genome  

HFK HPV18_1 E5 KO 
HFKs of donor 1,  

transfected with E5 KO HPV18 genome 

HFK HPV18_2 WT 
HFKs of donor 2,  

transfected with WT HPV18 genome 

HFK HPV18_2 E5 KO 
HFKs of donor 2,  

transfected with E5 KO HPV18 genome 

HFK_3 
HFKs of donor 3,  

untransfected 

 

2.5.1. Maintaining and passaging untransfected HFKs 

HFKs were maintained in serum free medium (SFM; GIBCO, UK) supplemented 

with 25 µg/ml bovine pituitary extract (GIBCO, UK) and 0.2 ng/ml recombinant 

EGF (GIBCO, UK) whereby the medium was replaced with fresh medium every 

2 days. Cells were only grown to a confluence of ≤ 80% in 10 cm dishes. The 

incubation conditions were the same as described for established cell lines 

(2.4.1). 

To passage, the medium was removed and replaced by PBS-EDTA solution 

(1% PBS, 0.1% EDTA). After 3 min incubation at 37°C, the PBS-EDTA was 

removed and replaced by 1 ml Trypsin-EDTA solution (Sigma, USA) which was 

left to incubate for 5 min - 10 min until cells detached. Trypsin was inhibited by 
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the addition of SFM supplemented with 1% Trypsin inhibitor (GIBCO, UK). 

HFKs were transferred to a falcon tube and centrifuged at 538 x g for 5 min at 

4°C. The pellet was resuspended in SFM, cells were counted on a 

haemocytometer and re-seeded at a density of 2 x 105 cells per dish.  

 

2.5.2. Maintaining and passaging HFKs with HPV18 genomes 

The HFK HPV18 cell lines of both donors (Table 2.3) were maintained in 10 cm 

dishes with 3T3 J2 fibroblasts as feeder cells in E-medium (see below) 

supplemented with 2 mM L-glutamine (Lonza, Switzerland) and 5 ng/ml EGF 

(BD Biosciences, UK).  

3T3 J2 fibroblasts were pre-treated with 8 μg/ml mitomycin-C (Roche, 

Switzerland) in DMEM for 2 h - 4 h and 2 x 106 cells were seeded in E-medium 

in 10 cm dishes 24 h prior to addition of transfected HFKs.  

HFKs containing the HPV18 WT and HPV18 E5 KO genomes were passaged 

as described (2.5.1) and seeded into the dishes containing the mitomycin-C 

treated 3T3 J2 fibroblasts.  

 

One litre of E-medium was prepared as follows: 600 ml of DMEM Hepes 

(Sigma, USA) were mixed with 320 ml Hams-F-12 (GIBCO, UK), 20 ml 

Penicillin/Streptomycin (GIBCO, UK), 5% FBS, 10 µg Cholera Toxin (Sigma, 

USA), 1 x hydrocortisone (Sigma, USA) and 1 x cocktail. One-hundred millilitre 

of 100 x cocktail was prepared by mixing 10 ml of 0.18 M Adenine (Sigma, 

USA), 10 ml of 5 mg/ml Insulin (Invitrogen, USA), 10 ml 5 mg/ml transferin 

(Sigma, USA), 10 ml 2 x 10-8 M 3,3`,5-Triiodo-L-thyronine (T3) (Sigma, USA) in 

PBS. The cocktail was filter-sterilised before use. 

 

2.5.3. Methylcellulose differentiation of HFKs 

Differentiation of HFKs and HFK HPV18 cell lines (Table 2.3) was induced by 

growing in a methylcellulose (MC) matrix according to the method described by 

Wilson and Laimins (Wilson and Laimins, 2005). Cells were grown in a 10 cm 

cell culture dish as described (2.5.1, 2.5.2) until 80% confluent. As in passaging, 

cells were lifted off the dish and the medium was removed by centrifugation. 
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One millilitre of E-medium (no EGF) was added to resuspend the cells. The 

cells from one dish were frozen at -80°C at this point to obtain the 0 h time point 

of differentiation The remaining cell suspensions were homogeneously mixed 

with 25 ml of MC matrix (1.5% w/v MC (Sigma, USA), 5% FBS in E-medium) in 

a 10 cm dish. The cultures were then incubated as described (2.4.1) 

Further time points for differentiation were collected at 48 h and 72 h. Semisolid 

medium containing differentiated cells were transferred to Falcon tubes and 

diluted with ice-cold PBS. Cells were spun down by centrifugation at 537 x g for 

10 min at 4 °C. The medium was discarded and the cell pellet washed three 

more times with ice-cold PBS. The cell pellet was stored at -80°C.  

 

2.5.4. Cell lysis of differentiated HFKs 

Cell pellets (2.5.3) were thawed on ice and resuspended in 500 μl lysis buffer (8 

M Urea, 2 mM phenylmethanesulfonylfluoride (PMSF), 10% 2-

mercaptoethanol). Cells were lysed mechanically by forcing through a syringe 

(gauge 19 needle, 1.5’’) 5 times. Cell debris was removed by centrifugation at 

17000 x g for 20 min at 4°C. The supernatant was taken forward for Western 

blot analysis (2.3.3, 2.3.4).  

 

2.5.5. RNA extraction from differentiated HFKs 

The cell pellets (2.5.3) were resuspended in 7.2 ml Trizol (GIBCO, UK) and 

incubated for 5 min at RT. Chloroform (1.4 ml) (Invitrogen, USA) was added and 

the mixture was shaken for 15 sec followed by incubation at RT for 3 min. 

Phase separation was achieved by centrifuging the samples at 12000 x g for 15 

min at 4°C. The aqueous phase was transferred to a fresh tube and the RNA 

precipitated by adding 3.6 ml isopropanol. After inversion, samples were 

incubated for 10 min at RT. The RNA was precipitated by centrifugation at 

12000 x g for 10 min at 4°C. The RNA was washed with 75% ethanol. The 

pellet was air-dried and resuspended in 50 µl TE (10 mM Tris/Cl, pH 8; 1 mM 

EDTA, pH 8.0) which was resolved by incubation at 55°C - 60°C for 10 min. The 

amount and quality of RNA samples was examined by spectrophotometry 

(2.1.4.2).  



89 

 

2.5.6. Organotypic raft cultures 

Organotypic raft cultures of HFK HPV18 cell lines (Table 2.3) were prepared 

according to the protocol by Wilson and Laimins (Wilson and Laimins, 2005). 

Briefly, keratinocytes were grown on a matrix of 8 mg/ml rat tail collagen (BD 

Biosciences, UK) and 2 x 106 3T3 J2 fibroblasts in E-medium supplemented 

with 2 mM L-glutamine and 5 ng/ml EGF. After 4 days, the matrix and 

keratinocytes were transferred onto a sterile wire mesh. An air-liquid interface 

was created by addition of E-medium without EGF. The organotypic raft 

cultures were grown for 13 days at 37°C and 5% CO2 with media changes 

every other day. Rafts were fixed by flooding in 4% paraformaldehyde (PFA; 4% 

PFA in PBS, pH 7.4). Rafts were embedded in paraffin and sectioned into 5 µm 

slices by Propath, UK. Haematoxylin and eosin (H&E) staining of the sections 

was also carried out by Propath, UK. Raft cultures were prepared and H&E 

samples imaged by Dr Christopher Wasson, University of Leeds, UK.  

 

2.5.7. Immuno-histochemistry  

Paraffin embedded organotypic raft cultures slices (2.5.6) or CIN1 and CIN3 

pathological sections (kindly provided by Prof Sheila Graham, University of 

Glasgow, UK) were stained as follows. Paraffin was removed by submersing in 

100% Xylene (BDH, UK) for 3 x 5 min. Rehydration of samples occurred by 

serial incubation for 1 min each in 100% ethanol, 90% ethanol and 70% ethanol 

followed by 5 min incubation in H2O. Antigens were retrieved by 15 min boiling 

in sodium citrate buffer (10 mM Tri-sodium citrate, pH 6; 0.05% Tween-20). 

After cooling, samples were washed in H2O followed by blocking in 10% normal 

goat serum (NGS) in PBS for 1 h at RT. In a humidity chamber, the primary 

antibody (Table A. 4) was incubated for 1 h at RT in 1.5% NGS buffer. Slides 

were washed 5 x in PBS prior to incubation with AlexaFluor labelled secondary 

antibody (Table A. 6) for 1 h in 1.5% NGS buffer. Unbound antibodies were 

removed by further washing and the samples mounted using ProLong Gold 

Antifade Reagent with 4',6-diamidino-2-phenylindole (DAPI) (Molecular Probes, 

UK) or UltraCruz™ Hard-set Mounting Medium (SantaCruz, UK). Edges were 

sealed with nail varnish and slides stored at 4°C until viewing (2.6.4).   
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2.5.8. Fluorescent intensity profiles 

Fluorescent intensity profiles across the height of the stained organotypic raft 

culture sections (2.5.7) were generated with ImageJ using the ‘Plot Profile’ 

function. Plot values were exported into Microsoft excel to generate plots with 

trendlines of the ‘moving average’ type and a period of 15. 

 

2.6. Immuno-cytochemistry 

2.6.1. Growing cells on coverslips 

Immuno-cytochemical staining was conducted in 12-well dishes (PAA, UK). 

Huh7 and SiHa cells, respectively, were seeded into the wells containing 

circular cover slips (No 1.5; Appleton Woods, UK) at a density of 1 x 105 

cells/ml. Cells were taken forward for staining (2.6.2, 2.6.3) when approximately 

70% confluent.  

 

2.6.2. Fixation of cells 

The medium was aspirated off the cells followed by one wash with PBS. Cells 

were then fixed by incubation with 4% PFA in PBS, pH 7 – 7.5 at RT for 10 min. 

Cells were washed again in PBS and stored at 4°C for short periods of time until 

use. 

 

2.6.3. Immuno-labelling 

Fixed cells were permeabilised with Triton X-100 (0.1% Triton X-100 in PBS) or 

0.5% Saponin (AlfaAesar, USA) for 10 min at RT. In case of Saponin 

permeabilisation, 0.5% Saponin was maintained throughout the staining 

procedure in the blocking and antibody buffers as well as the wash buffer (0.5% 

Saponin in PBS). Coverslips were incubated in blocking buffer (0.2% gelatine, 

10% NGS in PBS) for 15 min at RT. After a washing step in PBS, the primary 

antibody (Table A. 4) was diluted in antibody solution (0.2% gelatine in PBS) 

and incubated for 1 h at RT or at 4°C o/n. Followed by 4 washing steps with 
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PBS, the secondary antibody (Table A. 6) was diluted in antibody solution and 

incubated for 1.5 h at RT. After a final 4 washing steps, the coverslips were 

mounted onto glass slides (0.8 - 1.0 mm thick: VWR, USA) using the mounting 

agent ProLong Gold Antifade Reagent with DAPI (Molecular Probes, UK) or 

UltraCruz™ Hard-set Mounting Medium (SantaCruz, UK). When co-staining, the 

primary and secondary antibody incubations were repeated after the last 

washing step before mounting the coverslips. Edges of coverslips were sealed 

with nail varnish and slides were stored at 4°C until viewing. Analysis of co-

localisation of two proteins was conducted with the ‘Pearson–Spearman 

correlation co-localisation’ (PSC) plug-in (2.7.4) for ImageJ. 

 

2.6.4. Microscopy 

Samples were imaged with a Zeiss laser scanning confocal microscope (510-

META and 700; Zeiss, Germany) under an oil-immersion 63 x objective lens 

(NA = 1.40). Pinholes were adjusting for each channel to yield equal optical 

sections. The LSM700 operates a 405 nm, 488 nm, 555 nm and 639 nm laser, 

which allowed for 4 colour observations. Representative images were 

processed using the Zen 2011 software (Zeiss, Germany). 

 

2.7. Differential, detergent permeabilisation assay 

2.7.1. Transfection of Huh7 cells on coverslips 

Huh7 cells were seeded into 12-well plates containing circular cover slips at a 

density of 7 x 104 cells/ml and incubated o/n as described (2.4.1). Lipofectin 

(Invitrogen, USA) transfection was conducted as described (2.4.5). Briefly, 1 μg 

DNA was added to 50 μl Opti-MEM I Reduced Serum Medium - with 

GlutaMAX™ I. Also, 5 μl Lipofectin (Invitrogen, USA) was added to another 

aliquot of 50 μl Opti-MEM I Reduced Serum Medium - with GlutaMAX™ I. The 

DNA containing medium was added to the Lipofectin containing medium and 

incubated for 40 min at RT. Complete DMEM was replaced with fresh complete 

DMEM. Transfection mixture (DNA:Lipofectin ration = 1:5) was added to the cell 

dropwise and incubated o/n as described (2.4.1). The DMEM was replaced with 
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complete DMEM containing 10 μM of the proteasome inhibitor MG132 

(Calbiochem, UK). After incubation for up to 6 h, cells were fixed (2.6.2) and 

immuno-labelled under selective permeabilisation (2.7.2). 

 

2.7.2. Immuno-labelling under selective permeabilisation 

Cells were completely permeabilised with Triton X-100 and selectively 

permeabilised with Digitonin, respectively. In cells completely permeabilised, 

co-staining with FLAG (EnoGene, UK) and haemagglutinin (HA) (Sigma, USA) 

antibodies was conducted as described above (2.6.3). When selectively 

permeabilising the plasma membrane, cells were incubated with 5 µg/ml 

Digitonin in PBS (Cayman Chemical, USA), which was maintained in the 

blocking buffer, washing buffer and antibody solutions. In addition, samples 

were subject to control staining with no detergent present.  

 

2.7.3. Microscopy of selectively permeabilised samples  

Samples were imaged as described (2.6.4). Gain settings were set up for the 

Triton X-100 permeabilised samples for each sample and then maintained for 

the Digitonin permeabilised and control cells. 

 

2.7.4. Quantification of co-localisation and statistical analysis  

Quantification of co-localisation of FLAG and HA staining was conducted using 

the PSC ImageJ plug-in (French et al., 2008). The threshold was set to 25. A 

macro was written to standardise the analysis process (6.1). 

To determine the co-localisation of the two protein tags or two proteins in a 

specific area of the cell, a blue mask was applied that selected the area to 

investigate and excluded the remaining pixels from the analysis.  

The Pearson correlation coefficients (PCC values) were transferred into the 

data analysis software OriginPro8.6 (MicroCal Inc., USA) to perform a one-way 

ANOVA. The significance level was set to 0.05 and 0.01 respectively. The 

Tukey means comparison method and the Levene test for equal variances were 

applied.   
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2.8. Subcellular fractionations 

2.8.1. Crude fractionation  

HEK293T cells were separated into a nuclear and a cytoplasmic fraction. For 

this, cell pellets were lysed in 200 µl cytoplasmic lysis buffer (20 mM Tris/Cl, pH 

7.4; 100 mM NaCl, 5 mM MgCl2, 0.5% NP40, 1 x Protease inhibitor cocktail) by 

incubation on ice for 30 min with frequent vortexing. Cell nuclei were removed 

by centrifugation at 9600 x g for 20 min at 4°C. The supernatant accounted for 

the cytoplasmic fraction. The pellet was washed twice in cytoplasmic lysis buffer 

before resuspending in 200 µl radioimmuno-precipitation assay buffer (50 mM 

Tris/Cl, pH 7.5; 150 mM NaCl; 1% NP40; 0.5% w/v sodium deoxycholate; 0.1% 

SDS, 1 x Protease inhibitor cocktail). Debris was removed by centrifugation at 

96000 x g for 10 min at 4°C. The supernatant accounted for the nuclear fraction. 

Both fractions were subject to Western blot analysis (2.3.3). An antibody against 

Lamin B1 (Table A. 4) was used to identify the nuclear fraction while an 

antibody against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Table 

A. 4) was used as a marker for the cytoplasmic fraction.  

 

2.8.2. Membrane fractionation  

HEK293T cells expressing GFP-YIPF4 fusion protein (2.4.4) and BHK-21 cells 

expressing full-length FLAG-YIPF4-HA V244 and truncation mutants (2.4.9.3) 

were scraped into 1 ml of buffer M1 (10 mM PIPES, pH 7.4; 0.5 mM MgCl2; 1 x 

Protease Inhibitor Cocktail (Roche, Switzerland)) and lysed by sonication (Grant 

Ultrasonic bath XUBA1; Thermo Fisher Scientific, USA). Salt concentrations 

were adjusted by adding 250 μl of buffer M2 (10 mM PIPES, pH 7.4; 600 mM 

KCl; 150 mM NaCl; 22.5 mM MgCl2). Samples were centrifuged at 3000 x g for 

10 min at 4°C to remove cell nuclei and unbroken cells. The supernatant was 

subject to ultra-centrifugation at 100000 x g for 10 min at 4°C to pellet the 

membranous fraction. The pellet was washed once in adjusted buffer M1 and 

resuspended in 2 x LDS sample buffer (Invitrogen, USA) plus 0.1% 2-

mercaptoethanol. The supernatant depicting the soluble fraction was subject to 

o/n acetone precipitation at -20°C. After washing the pelleted soluble fraction 
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once in 70% ethanol, these samples were also resuspended in 2 x LDS sample 

buffer plus 01% 2-mercaptoethanol. Both fractions were examined by Western 

blot analysis (2.3.2, 2.3.3). An antibody against GAPDH (Table A. 4) identified 

the soluble fraction, while an antibody against trans-Golgi network integral 

membrane protein 2 (TGN46) (Table A. 4) or against human transferrin receptor 

(TfR) (Table A. 4) served as marker for the membranous fraction. 

 

2.9. Immuno-precipitation 

Co-IPs of epitope/GFP-tagged overexpressed proteins and endogenous YIPF4, 

respectively, were performed using dynabeads protein G (Invitrogen, USA). 

HEK293T cells in 10 cm cell culture dishes were transfected (2.4.4) and lysed 

(2.4.8) as described. Total protein concentration was determined (2.3.1) and the 

concentrations adjusted to the sample with the lowest concentration using 

binding buffer (50 mM Tris/Cl, pH 7.4; 100 mM KCl, 0.1 mM EDTA, 0.2% NP40, 

0.1% BSA, 2.5% Glycerol, 2 mM dithiothreitol (DTT), 1 x Protease inhibitor 

cocktail, EDTA-free (Roche, Switzerland)). Magnetic dynabeads protein G slurry 

(15 µl) was equilibrated with binding buffer and was then incubated with 2 µl – 

2.5 µl of respective antibody (α-FLAG, α-GFP, α-YIPF4; Table A. 4) and a 1:1 

mixture of adjusted cell lysate and binding buffer for 1 h at RT. After 4 washes 

with wash buffer (100 mM Tris/Cl, pH 7.4; 100 mM NaCl, 0.5% NP40, 2 mM 

DTT, 1 x Protease inhibitor cocktail, EDTA-free (Roche, Switzerland)) beads 

were transferred to a fresh tube. Proteins were eluted by boiling for 10 min in 35 

μl of 2 x LDS sample buffer (Invitrogen, USA) plus 0.1% 2-mercaptoethanol. 

Eluates were examined by Western blot analysis (2.3.2, 2.3.3).  
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2.10. Quantitative Real-time PCR 

2.10.1. RNA extraction 

Total RNA was extracted from cell pellets (2.4.8) using the Quick-RNA™ 

MiniPrep (Zymo Research, USA) and RNeasy Plus Mini Kit (Qiagen, Germany) 

according to the manufacturers protocols. RNA from HFK cell lines were 

extracted as described (2.5.5). The RNA yield was determined using a 

Nanodrop spectrophotometer (Thermo Fisher Scientific, USA). 

 

2.10.2. Reverse transcription 

Five hundred nanogramme of total RNA (2.10.1) was reverse transcribed (RT) 

into complementary DNA (cDNA) using the RevertAid First Strand cDNA 

Synthesis Kit (Thermo Fisher Scientific, UK) according to the manufactures 

protocol. Briefly, 500 ng of RNA (2.10.1) was pre-incubated with 0.5 µg oligo 

(dT)18 primers for 5 min at 65°C. Reaction buffer, 20 units RiboLock RNase 

Inhibitor, 1 mM dNTP mix and 40 units M-MuLV Reverse Transcriptase were 

added and the reverse transcription performed for 60 min at 37°C. The reaction 

was terminated by heating to 70°C for 5 min.  

 

2.10.3. Quantitative Real-time PCR 

The quantitative real-time PCR (qPCR) reaction was conducted using the 

QuantiFast® SYBR® Green PCR kit (Qiagen, Germany) and a Corbett Rotor-

Gene 6000 (Qiagen, Germany). Briefly, 2.5 µl of RT-reaction mix (2.10.2) 

(equals 62.5 ng of cDNA) and 1 µM of each forward and reverse primer (Table 

2.4) were added to the 2 x QuantiFast SYBR Green PCR Master Mix. The PCR 

reaction was conducted as follows: initial activation step for 5 min at 95°C and a 

two-step cycle of denaturation (10 sec at 95°C) and combined annealing and 

extension (30 sec at 60°C) which was repeated 40 times. A melting curve from 

60°C – 95°C with 5 sec at every 1°C interval was performed at the end of the 

last cycle.  
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Table 2.4 Primers used for qPCR analysis 

primers fwd 5' – 3' rev 5' – 3' 

YIPF4 AGATCTCAGTGGTTCAATAGCATC TCCAAGAGTGGCTTGTTATC 

cyclin A CTGGCTGGTGGAGGTTGGG                     
(Müller et al., 1999) 

CCCTCTCAGAACAGACATACA 

HPV18 E7 GACCTAAGGCAACATTGCA GCTCGTGACATAGAAGGTCAA 

U6 CTCGCTTCGGCAGCACA GCAAATTCGTGAAGCGTT 

HPV18 E7 primers were kindly provided by Dr Christopher Wasson and U6 

primers were kindly provided by Rosella Doble, University of Leeds, UK. The 

YIPF4 qPCR primers amplify the bp 78 – 236 of the YIPF4 cDNA sequence 

(NCBI Reference Sequence: NM_032312.3). fwd = forward, rev = reverse. 

 

2.10.4. Analysis of q-PCR results 

The data obtained (2.10.3) was analysed according to the ΔΔ Ct method (Livak 

and Schmittgen, 2001) using the Rotor-Gene 6000 software. U6 served as 

normaliser gene.  

 

2.10.5. Determination of q-PCR primer efficiency 

The efficiency of primer pairs was determined by qPCR as described (2.10.3) 

using 1 µM of each primer (Table 2.4) and a dilution series of cDNA (62.5 ng, 

6.25 ng, 0.625 ng 0.0625 ng). The primer pair efficiencies (Table 2.5) were 

calculated using the ‘quantitation analysis’ function of the Rotor-Gene6000 

software. 

Table 2.5 Efficiencies for the qPCR primers used in this study 

primers efficiency 

YIPF4 1.13 

cyclin A 0.99 

HPV18 E7 1.09 

U6 1.26  

The efficiency of the U6 primer pair was determined by Rosella Doble, 

University of Leeds, UK.   
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2.11. FACS assays for determination of cell surface HLA class I 

expression  

2.11.1. Transfection of SiHa cells with siRNA 

SiHa cells were plated into 6-well dishes at a density of 1 x 105 cells/ml and 

grown under normal conditions (2.4.1) for 48 h. Effective YIPF4 specific siRNA4 

(Table 2.2) and siRNA NC, respectively, were transfected with HiPerFect 

Transfection reagent as described (2.4.6) using 300 ng siRNA per well. Two 

wells were transfected per siRNA. SiHa cells were harvested 40 h post-

transfection (2.4.8). The cells were counted using a haemocytometer and the 

cell number was adjusted to 15 x 105 cells/sample for staining with HLA class I 

antibody (2.11.4). 

 

2.11.2. Transfection of SiHa cells with GFP fusion-protein encoding 

plasmids 

SiHa cells were plated and grown as above (2.11.1). The transfections were 

performed with Lipofectin as described (2.4.5) using 1 µg of peGFP-C1, peGFP-

16E5 and peGFP-US6 (kindly provided by Dr Eric Hewitt, University of Leeds, 

UK), respectively. Four wells were transfected per constructs. Sixteen hours 

post-transfection cells were harvested (2.4.8) and the cell number was 

determined using a haemocytometer. Total cell number was adjusted to 

approximately 22 x 105 cells/sample for staining with HLA class I antibody 

(2.11.4). 

 

2.11.3. Co-transfection of SiHa cells with GFP fusion-protein 

constructs and HLA-A201 

SiHa cells were prepared for Lipofectin mediated transfection as described 

(2.11.2). Cells were transfected with a total of 2.1 µg DNA/well and 10.5 µl 

Lipofectin/well. The ration of peGFP-C1 and peGFP-16E5, respectively, to 

pcDNA3.1(-)Pac-HLA-A201 (kindly provided by Dr Eric Hewitt, University of 

Leeds, UK) was 1:2 (700ng peGFP-C1/peGFP-16E5 : 1400 ng pcDNA3.1(-



98 

 

)Pac-HLA-A201). A control sample transfected with 700 ng peGFP-C1 and 3.5 

µl Lipofectin was included. Cells were harvested 16 h post-transfection and the 

cell number was determined and adjusted to a total cell number of 22 x 105 

cells/sample. Cells were stained according to the protocol described (2.11.4), 

however, using the HLA-A201 type specific antibody clone BB7.2 (1:100; 

Biolegend, USA).  

 

2.11.4. Staining live cells with HLA class I antibody for flow 

cytometry analysis 

All subsequent treatment was carried out on ice, with ice-cold buffers and in a 

cooled centrifuge. All incubation steps were carried out on a tube roller at 4°C. 

Samples with adjusted total cell number (2.11.1, 2.11.2, 2.11.3) were 

centrifuged at 400 x g for 5 min and the cell pellet was washed in PBS. Blocking 

was performed by incubating cells in blocking buffer (10% NGS in PBS) for 1 h. 

The blocking buffer was replaced with antibody solution (1.5% NGS in PBS) 

with HLA class I antibody (W6/32; 1:100; Abcam, UK). After 1 h incubation, cells 

were washed once in PBS before incubating with antibody solution and 

secondary Alexa Fluor® 647 goat anti-mouse immunoglobulin G (IgG) antibody 

(1:500, Invitrogen, USA; kindly provided by Prof G. Eric Blair) for 1 h. Samples 

were washed three times in PBS and eventually resuspended in 350 µl PBS. A 

viability marker, propidium iodide (PI; Invitrogen, USA) was added to a final 

concentration of 2.4 µg/ml 5 min before analysis on the flow cytometer (2.11.5).  

 

2.11.5. Flow cytometer analysis of HLA class I cell surface 

expression 

Samples were analysed on an LSRFortessa (BD Biosciences, USA) flow 

cytometer using the accompanied software (FACSDiva Version 6.2). All cell 

populations were gated to contain live cells only by excluding PI positive cells.  

The cells surface HLA class I expression of cells transfected with YIPF4 specific 

siRNA4 (2.11.1) was determined for 100 000 live cells per sample and was 

repeated three times. 
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The HLA class I cell surface levels of SiHa cell expressing GFP, GFP-16E5 and 

GFP-US6 (2.11.2) was determined for 500 000 live cells which were 

sequentially gated to include GFP expressing cells only. The experiment was 

repeated three times, once in triplicate and twice in duplicate.  

SiHa cell samples co-expressing GFP, GFP-16E5 and HLA-A201 (2.11.3) were 

gated to include 10 000 live and GFP positive cells for analysis of cell surface 

HLA-A201 class I expression. The experiment was conducted three times in 

duplicate.  

For each sample, the mean fluorescence of the HLA/HLA-A201 class I 

detecting channel was determined using the FACSDiva software. The mean 

fluorescence values were compared by one-way ANOVA using OriginPro8.6 

software. Histograms of fluorescence intensity in HLA/HLA-A201 class I 

detecting channel versus cell count were compiled with FlowJo software version 

7.6.4 (TreeStar, USA) expressing the cell count as percentage of maximum cell 

count (= relative cell number).  
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2.12. Label free quantification of YIPF4 binding partners 

2.12.1. Co-IPs using the GFP-Trap® system 

Co-IPs for label free quantification (LFQ) of GFP-YIPF4 binding partners were 

performed with the GFP-Trap system (Chromotek, Germany) according to the 

manufacturer’s protocol. To avoid contamination of samples with keratin, all 

buffers used were prepared freshly and filter sterilised. All steps of the Co-IP 

protocol were conducted in an Airstream Class II Biological Safety Cabinet 

(ESCO, UK). Briefly, GFP-YIPF4 and GFP (control) were overexpressed in 

HEK293T cells (2.4.4). Sixteen hours post-transfection, GFP-YIPF4 expressing 

cells were treated with 10 μM MG132 for 4.5 hours. All cells were then lysed 

and total protein concentration determined and adjusted as described (2.3.1, 

2.4.8). Fifty microliters of GFP-Trap beads slurry per sample were equilibrated 

with dilution buffer (10 mM Tris/Cl, pH 7.5; 150 mM NaCl, 0.5 mM EDTA, 1 x 

Protease inhibitor cocktail, EDTA-free (Roche, Switzerland)). One millilitre of 

adjusted protein sample was diluted with the same amount of dilution buffer and 

the o/n incubation was carried out at 4ºC with end-over-end rotation. The 

samples were washed once in ice-cold dilution buffer and once in ice-cold wash 

buffer (10 mM Tris/Cl pH7.5; 500 mM NaCl; 0.5 mM EDTA). Proteins were 

eluted in 100 µl elution buffer (50 mM Tris/Cl, pH 8.8; 0.1% SDS, 1% DTT) by 

heating to 70°C for 10 min. Eluate was transferred to a fresh tube and send for 

LFQ to Dr Tobias Lamkemeyer, CECAD, Cologne, Germany (2.12.2, 2.12.3, 

2.12.4). An aliquot of the samples was analysed by Western blot for presence of 

GFP-YIPF4 and GFP.  

For a second attempt to determine the YIPF4 interactome, the transfected 

HEK293T cells were subject to crude subcellular fractionation (2.8.1) before Co-

IP and LFQ. 

 

2.12.2. Tryptic in-solution digest 

Immuno-precipitated proteins (2.12.1) were digested with Lys-C followed by 

trypsin according to the filter aided sample preparation method developed by 

Wisniewski and colleagues (Wisniewski et al., 2009). Ten kilo dalton filters were 
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used. Peptides were desalted with stop-and-go-extraction tips according to the 

method by Rappsilber and colleagues (Rappsilber et al., 2007). Eluted peptides 

were concentrated by vacuum-centrifugation and diluted to a volume of 10.0 µl 

with 0.5% acetic acid. 

 

2.12.3. Nano-liquid chromatography electrospray ionisation tandem 

mass spectrometry (nano-LC ESI-MS/MS) 

Sample analysis was performed on a LTQ Orbitrap Discovery mass 

spectrometer (Thermo Fisher Scientific, USA) coupled to an EASY-nLC II nano-

LC system (Proxeon/ Thermo Fisher Scientific, USA). Four microliter of each 

sample were separated on a C18 reversed phase column (length: 15 cm, 

internal diameter: 75 µm, Proxeon/ Thermo Fisher Scientific, USA) for 120 min 

(10% - 40% acetonitrile) at a flow rate of 250 nl/min (buffer A: 0.1% formic acid 

in H2O; buffer B: 0.1% formic acid in acetonitrile). Masses of intact peptides 

were detected in the Orbitrap at 30,000 resolution in the mass-to-charge (m/z) 

range 350–2000 using m/z 445.12003 as a lock mass. Up to 10 CID spectra 

were acquired in the linear ion trap following each full scan.  

 

2.12.4. Protein identification and label free quantification 

Data obtained from the nano-LC ESI-MS/MS were analyzed using the 

Progenesis LC-MS software (version 4.0, Nonlinear Dynamics, UK). Raw data 

files were imported in profile mode and automatically aligned resulting in 194 

vectors. To increase alignment quality, 87 vectors were added manually. Raw 

abundances of features were normalized using the “normalise to all proteins” 

function (factor 0.98). All peptide features with 2 - 4 charges (z = 2 - 4) and 

MS/MS data were used for quantitation and identification. Peak-list files 

containing MS/MS spectra were created and subsequently used for database 

search using an in-house Mascot server (version 2.2, Matrixscience, London, 

U.K., (Perkins et al., 1999)) and the UniProt database of Homo sapiens. The 

following search parameters were applied: trypsin as proteolytic enzyme, up to 

two missed cleavages, carbamidomethylation at cysteine residues was set as 

fixed modification and oxidation at methionine as a variable modification. 
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Peptide mass tolerance was 10‰ for intact peptide masses detected in the 

Orbitrap and 0.8 Da for fragment ions in the linear ion trap.  

The lists of identified peptides were treated to achieve a false positive rate of 

4%. Peptides were then filtered for mass error of ≤ 5‰ and sequence length of 

at least 6 amino acid residues. Entries containing the description “keratin” were 

removed. Protein quantitation was performed on all peptides as well as only on 

non-conflicting peptides. In addition, peptides were filtered for highest mean in 

the test condition and a fold change of ≥ 1.5. 

The list of UniProt protein IDs was analysed for molecular functions and 

biological processes using the PANTHER classification system (Mi et al., 2013). 

Results were illustrated in pie charts with Microsoft excel.  
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Chapter 3. Exploration of the basic properties of YIPF4 

3.1. Introduction 

3.1.1. Expression profile of YIPF4 

Despite identification a decade ago as a member of the YIP1 family of proteins, 

YIPF4 has received little scrutiny (Shakoori et al., 2003). Thus, we hold very 

little experimental evidence of the properties and functions of this protein. The 

YIPF4 gene region is located on chromosome 2 in humans (bp 32,502,979 - 

32,537,002 = 34,024 bp), but no promoter region or transcription factors 

responsible for expressional regulations are identified to date. Northern blot 

analysis identified two splicing variants of YIPF4 mRNA (Shakoori et al., 2003) 

most likely corresponding to the 1982 bp mRNA (NCBI ref. NM_032312.3) and 

1390 bp mRNA (NCBI ref. XM_005264600.1) entered into the NCBI database. 

Automated computational analysis predicts a third splicing variant of 1760 bp 

(NCBI ref. XM_005264599.1). However, only one YIPF4 protein of 244 amino 

acids and 27 kDa was identified with an antibody raised against the 

recombinant full-length YIPF4 protein (Tanimoto et al., 2011, Yoshida et al., 

2008). Large scale mass spectrometry analysis suggests the phosphorylation of 

tyrosines at positions 10 and 60 and the ubiquitination of lysines at positions 47 

and 91 (Hornbeck et al., 2004). Others did not observe any major post-

translational modifications of YIPF4 (Tanimoto et al., 2011) and further research 

is needed to resolve this seeming contradiction. 

 

Northern blot analysis showed that YIPF4 mRNA of the two splicing variants is 

expressed in all human tissues tested (heart, brain, placenta, lung, liver, 

skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small 

intestine, colon, peripheral blood leukocyte) (Shakoori et al., 2003). In addition, 

human YIPF4 mRNA was part of several large-scale microarray projects that 

confirmed expression in a multitude of normal and diseased human tissues 

(MGC, 2004, Ohira et al., 2003, Ota et al., 2004) (uploaded at 

http://biogps.org/).  



104 

 

Contrary to the large-scale YIPF4 mRNA expression data, little is known about 

the expression of YIPF4 protein. YIPF4 protein was detected in HeLa cells in 

addition to normal rat kidney cells and rat liver Golgi lysates with a specific 

antibody (Tanimoto et al., 2011). The expression in HeLa cells provides some 

evidence that YIPF4 protein is present in cells infected with HPV. No further 

evidence is available on the expression of YIPF4 protein in HPV susceptible 

and permissive cells or in pathological sections of HPV infected sites. The 

expression profile of YIPF4 protein in differentiating cells is also unknown. 

 

The subcellular localisation of YIPF4 protein is firmly established in HeLa cells 

(Tanimoto et al., 2011). Co-localisation with the cis-Golgi marker Golgi matrix 

protein 130 (GM130) in immuno-fluorescence microscopy and density gradient 

centrifugation in addition to immuno-electron microscopy analysis demonstrated 

its localisation to the cis-Golgi. YIPF4 is thought to be involved in maintenance 

of the Golgi structure since siRNA knock down of YIPF4 causes fragmentation 

of the Golgi (Tanimoto et al., 2011).  

 

3.1.2. Topology of YIPF4 

The topology of YIPF4 was never formally investigated but its membrane 

topology was predicted from the physiochemical properties of its amino acids 

(Shakoori et al., 2003). Further clues towards the topology can theoretically be 

derived from homologue YIP1 family members.  

 

When the YIP1 family members were first identified in humans (Shakoori et al., 

2003) they were predicted to be ‘five-pass trans-membrane proteins localising 

to the Golgi and ER’ (FinGERs) with YIPF4 being family member 4. The 

predictions were made with the online tool SOSUI which is based on the Kyte 

and Doolittle hydropathy index (Kyte and Doolittle, 1982), amino acid charges, 

amino acid amphiphilicity and the length of the protein sequence (Hirokawa et 

al., 1998). It is highly accurate (>99%) in predicting whether a protein is a 

membrane or soluble protein and in predicting the number of trans-membrane 

helices (accuracy ~97%). In this 5 TMD model, the hydrophilic N-terminus is 

exposed to the cytosol and the hydrophobic C-terminus is buried within the 
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membrane in accordance with the YIP1 family characteristics (1.8). This 

orientation was experimentally confirmed for the human YIP1 family members 

YIPF1, YIPF2 and YIPF3 in an immuno-fluorescence microscopy approach 

(Shakoori et al., 2003). The topology model of YIPF4 entered in the UniProt 

database (ID: Q9BSR8) is based on the application of several predictive tools 

(Eisenberg et al., 1984, Jones, 2007, Käll et al., 2004, Krogh et al., 2001) and is 

almost identical to the SOSUI tool generated model (Shakoori et al., 2003). 

 

Another way of approaching YIPF4 membrane topology is by deriving it from 

better-studied homologues. The yeast homologue Yip1p, founder of the Yip1 

domain family, was first identified by Yang and colleagues in 1998 (Yang et al., 

1998) and is therefore amongst the better-studied proteins of this family 

(1.8.2.1). It is thought to have three TMD (Yang et al., 1998) although this 

topology model is also purely based on computational predictions. The UniProt 

database entry of Yip1p (ID: P53039) favours a 5 TMD model based on a 

consensus model of the predictive tools mentioned above. These contradictory 

models underline the fact that no experimental data is available on the TMDs of 

YIP1 family members which illustrates the urgent need for experimental 

examination. 

 

The aim of this chapter is to explore some essential properties of YIPF4 to form 

a basis for further research on this protein. The expression of YIPF4 protein and 

mRNA in cell lines relevant to HPV research is examined as well as the 

presence of YIPF4 protein in organotypic raft cultures and pathological sections 

of HPV induced cervical lesions. Its subcellular localisation is investigated and 

its predicted 5 TMD topology sought to be experimentally verified 
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3.2. Results  

3.2.1. YIPF4 was expressed in various established cell lines 

In order to investigate YIPF4 protein expression in various established cell lines 

of the cervix (CaSki, SiHa, HeLa, C33A), skin (HaCaT), kidney (HEK293T 

(human), Vero (monkey), Cos-7 (monkey), BHK-21 (hamster)), liver (Huh7) and 

bone tissue (U-2 OS, Saos-2), cell pellets were lysed and total protein 

separated by SDS-PAGE. The corresponding Western blots were probed with a 

commercial YIPF4 antibody. It confirmed the presence of YIPF4 in every 

sample by showing a clear band at the expected size of approximately 27 kDa 

(Figure 3.1A). Overexpressed, myc epitope tagged YIPF4 in HEK293T cells 

(lane 6) was successfully detected with the YIPF4 antibody confirming that the 

detected protein is YIPF4. It showed an additional higher order oligomeric form, 

which according to its size (approximately 58 kDa), corresponds to a YIPF4 

dimer. The endogenous YIPF4 was hardly detectable in this sample.  

Three different passages per cell lines were examined on Western blots and 

densitometry analysis was performed with ImageJ (Figure 3.1B). The relative 

YIPF4 protein amounts were determined by calculating the ratio of YIPF4 band 

intensities to the loading control tubulin (Figure 3.1B). Overall, the relative 

amount of YIPF4 did not vary significantly between the human cell lines tested 

(mean values between 0.2 – 5.4). Only the hamster kidney BHK-21 cells 

expressed significantly more YIPF4 protein than U-2 OS and HeLa cells (p ≤ 

0.05).  

 

The YIPF4 transcript amounts were determined by qPCR relative to the 

housekeeping gene, U6. These showed markedly more variation (Figure 3.2A). 

Amongst the human cell lines tested, U-2 OS cells expressed significantly more 

YIPF4 mRNA than the cervical cell lines C33A and HeLa (p ≤ 0.05 and p ≤ 0.01, 

respectively) and the liver cell line Huh7 (p ≤ 0.01). The monkey kidney cells 

Vero expressed significantly more YIPF4 mRNA compared to the same cervical 

and liver cell lines (p ≤ 0.05). BHK-21 cells expressed significantly less YIPF4 

mRNA than Vero (p ≤ 0.05) and U-2 OS cells (p ≤ 0.01). Thus, the observations 
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made on protein (Figure 3.1B) and transcript levels (Figure 3.2A) do not 

correlate directly. 

The qPCR primers were positioned to amplify bp 78 – 236 of YIPF4 cDNA. 

There is no indication for splicing variants in this region since only one PCR 

product of the expected size (159 bp) was obtained (Figure 3.2B).  

 

 

Figure 3.1 YIPF4 protein was expressed in various cell lines. A. Lysates from twelve cell 

lines were separated by SDS-PAGE and the endogenous YIPF4 protein detected with the 

YIPF4 antibody on the Western blot. Also, myc epitope tagged YIPF4 was overexpressed in 

HEK293T cells (lane 6). Apparent double bands are artefacts of the electrophoresis B. The 

relative YIPF4 protein levels were determined by densitometry analysis. For this, the ratios of 

YIPF4 and tubulin band intensities (A) were determined using the ImageJ software. Each bar 

represents the mean (± standard deviation of the mean (SDM)) of three experimental 

replicates. The data were analysed by one-way ANOVA. * p ≤ 0.05 
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Figure 3.2 YIPF4 mRNA was expressed in various cell lines. A. Total RNA from twelve cell 

lines was extracted and YIPF4 transcript levels were determined by qPCR. Transcript levels 

were analysed with the ΔΔC
t
 method, normalised to the housekeeping gene U6 and 

presented in relation to the HEK293T samples. Each bar represents the mean (± SDM) of 

three experimental replicates. A one-way ANOVA was performed. Solid line = p ≤ 0.05, 

dashed line = p ≤ 0.01 B. Representative qPCR amplification products (A) spanning bp 78 - 

236 of YIPF4 cDNA sequence were separated on a 3% agarose gel. 
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3.2.2. YIPF4 was expressed in human foreskin keratinocytes cell 

lines to similar levels 

YIPF4 was successfully detected in cervix and skin established cell lines, which 

are infected by or theoretically susceptible and permissive to HPV. YIPF4 

expression also needed confirmation in HFK cell lines generated from three 

donors of primary HFKs, which were untransfected or transfected with WT 

HPV18 genomes (HFK_3, HFK HPV18_1 WT, HFK HPV18_2 WT). Also, cells 

derived from the same donors were transfected with E5 knock out (KO) HPV18 

genomes (HFK HPV18_1 E5 KO, HFK HPV18_2 E5 KO). They were included 

in the experiment to establish a possible effect on YIPF4 protein and/or 

transcript levels by the E5 protein. The presence of the HPV18 WT and E5 KO 

genotypes were validated by sequencing of the E5 ORF (data not shown).  

Total protein from these cell lines was separated by SDS-PAGE and the 

corresponding Western blot probed with the YIPF4 antibody. YIPF4 was clearly 

detectable in every cell line as a band of approximately 27 kDa (Figure 3.3A). 

Relative quantification of YIPF4 protein was performed by densitometry analysis 

of three different passages per cell line (Figure 3.3B). It revealed no significant 

differences in YIPF4 protein levels amongst the three donors. Notably, the 

YIPF4 protein levels were similar between cell lines with the HPV18 WT and 

HPV18 E5 KO genotype, respectively, indicating that 18E5 does not have an 

effect on the YIPF4 protein levels. 

The YIPF4 encoding mRNA was quantified relative to U6 by qPCR (Figure 

3.3C). In agreement with the protein data (Figure 3.3B), there was no marked 

difference in YIPF4 transcript levels amongst the cell lines.  
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Figure 3.3 YIPF4 was expressed in HFK cell lines. A. Total protein from HFK cell line lysates 

was separated by SDS-PAGE. The endogenous YIPF4 protein was detected with the YIPF4 

antibody on the Western blot. ‘/’ = no HPV18 genome. Marker in kDa. B. The relative YIPF4 

protein levels are illustrated by the ratios of YIPF4 and tubulin band intensities (A) as 

determined with the ImageJ software. C. Total RNA was extracted from HFK cells and YIPF4 

transcript levels were determined by qPCR and normalised to the housekeeping gene U6. 

Transcript levels are expressed in relation to the HFK HPV18_2 WT samples. Analysis of 

transcript levels was performed using the ΔΔC
t
 method. Each bar (B, C) represents the 

mean (± SDM) of three independent replicates. A one-way ANOVA of YIPF4 protein (B) and 

transcript (C) levels showed no significant differences of YIPF4 levels in these HFK cell lines.  
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3.2.3. YIPF4 was expressed in organotypic raft cultures and 

localised at the Golgi 

To date, detection of YIPF4 expression has been confined to monolayer cell 

culture systems. The HPV life cycle, however, depends on cell differentiation so 

the investigation of YIPF4 expression in organotypic raft cultures was essential.  

The HFK cell lines of the three donors (3.2.2) were grown in the organotypic raft 

culture system. Haematoxylin and eosin (H&E) staining of their histological 

sections allowed the observation of successful stratification into the basal, 

suprabasal, granular and cornified cell layers (Figure 3.4A, upper panel). 

Immuno-histochemistry with the YIPF4 antibody clearly showed equal staining 

of histological sections of organotypic raft cultures of all cell lines (Figure 3.4A, 

middle panel). YIPF4 was expressed throughout the basal, suprabasal and 

granular layers but absent in the cornified layer. The amount of YIPF4 protein 

was similar throughout those layers concluding from the fluorescence intensity 

profile spanning the height of the raft culture in the microscopy image (Figure 

3.4A, lower panel). This intensity profile was similar for raft cultures of all cell 

lines. This implies that 18E5 and other HPV proteins do not affect the 

expression levels of YIPF4 during keratinocyte differentiation.  

 

Since subcellular localisation of proteins is difficult to determine in sections of 

three dimensional culture systems, the subcellular localisation of YIPF4 was 

investigated in monolayer cell culture. Others observed a co-localisation of 

YIPF4 with the cis-Golgi marker GM130 in HeLa cells (Tanimoto et al., 2011). In 

our hands, staining with a GM130 antibody was not successful (data not 

shown). The yeast homologues of YIPF4, Yip4p and Yip5p, were shown to 

localise to the trans-Golgi (Inadome et al., 2007). Also, the mammalian 

paralogues, YIPF5 (Kano et al., 2009), FLAG-YIPF6 (Brandl et al., 2012) and 

GFP-YiF1 (Jin et al., 2005) co-localised with trans-Golgi network proteins like 

TGN46. Thus, SiHa cells were co-stained with YIPF4 and TGN46 antibodies 

(Figure 3.4B). A clear co-localisation between YIPF4 and TGN46 could be 

observed implying that YIPF4 at least partially localised to the trans-Golgi 

network in SiHa cells.  
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Figure 3.4 Immuno-fluorescent detection of YIPF4. A. HFK cell lines were grown in 

organotypic raft cultures for 13 days. Their histological sections were H&E stained (upper 

panel) and stained for endogenous YIPF4 (green; middle panel). Representative images of 

donor 1 and 3 are shown. Cell layers as identified by morphology are indicated on the right. 

The fluorescent intensity profiles were determined with ImageJ across the basal (B), 

suprabasal (S), granular (G) and cornified (C) layers (lower panel) and a trend line fitted. ‘/’ = 

no HPV18 genome. B. SiHa cells were grown on cover-slips, fixed as above and stained for 

YIPF4 and the trans-Golgi network marker TGN46. Immuno-fluorescent images were 

acquired with Zeiss LSM700 confocal microscope and H&E images were acquired with Zeiss 

AxioVert 200 inverted microscope. Cell nuclei were labelled with DAPI (blue, A + B). Scale 

bars = 20 µm 
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3.2.4. YIPF4 was expressed in pathological sections of CIN1 and 

CIN3 lesions 

With the YIPF4 expression verified in the three dimensional model of HPV 

infected sites it was important to investigate whether it was also present in 

clinical samples of HPV induced lesions. For this, pathological sections of 

HPV16 positive CIN1 and CIN3 lesions were examined. Most lesions of CIN1 

and CIN3 grade express 16E4 protein (Griffin et al., 2012). The presence of 

HPV16 in these pathological samples was therefore confirmed by successful 

staining of both samples for 16E4 protein (Figure 3.5). Co-staining with the 

YIPF4 antibody showed a clear expression of YIPF4 in the CIN1 and CIN3 

lesions confirming that YIPF4 is expressed in HPV induced cervical lesions.  

 
 

Figure 3.5 YIPF4 was expressed in clinical samples of cervical lesions. Pathological sections 

of HPV16 positive CIN grade 1 and 3 were stained with YIPF4 and 16E4 antibodies. Cell 

nuclei were visualised with DAPI (blue). Images were acquired on LSM700 confocal 

microscope. Scale bar = 20 µm 
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3.2.5. Presence of HPV18 genome rescued YIPF4 expression upon 

HFK differentiation 

A complementary model system to the organotypic raft cultures to investigate 

differentiating cells is the methylcellulose (MC) HFK monolayer cell culture. HFK 

cell lines from all 3 donors were grown for 0 h and 48 h in MC medium and their 

lysates were analysed on Western blots (Figure 3.6A).  

The cells were successfully differentiated after 48 h in MC medium, as implied 

by the decreased expression of the marker proteins cyclin A and HPV18 E7 

compared to the 0 h time point.  

The Western blots were probed with the YIPF4 antibody, and YIPF4 protein 

was detected in undifferentiated cells (Figure 3.6A, lanes 1, 3, 5, 7, 9) as before 

(Figure 3.3A). However, in contrast to what was observed in organotypic raft 

cultures of untransfected HFK cells (Figure 3.4A, middle panel), YIPF4 protein 

was no longer present in differentiated HPV18 negative HFK cells (Figure 3.6A, 

lane 2). The HFK HPV18 WT and E5 KO cell lines maintained YIPF4 protein 

levels upon differentiation (Figure 3.6A, lanes 4, 6, 8, 10) in accordance with the 

observation made in organotypic raft cultures (Figure 3.4A, lower panel).  

The densitometry quantification partially supported this finding since the 

untransfected HFK cells showed a significant down-regulation of YIPF4 protein 

upon cell differentiation (p ≤ 0.05) while the HFK HPV18 cell lines maintained 

YIPF4 protein levels upon differentiation (Figure 3.6B). In contrast, the YIPF4 

protein level of differentiated HPV negative HFKs was not statistically 

significantly lower than in differentiated HPV18 positive HFK cell lines. There 

was, however, a clear trend towards increased YIPF4 protein in the 

differentiated HPV18 positive HFK cells. Note, that HFK HPV18 WT and E5 KO 

cells showed similar levels of YIPF4 upon differentiation. This implies that 

YIPF4 protein is normally down-regulated upon cell differentiation but the HPV 

context appears to rescue its expression (most likely independent of E5). 

 

This investigation was extended to the examination of the YIPF4 transcript 

level. This was quantified relative to U6 by qPCR after 0 h and 72 h of MC-

mediated differentiation. This investigation confirmed the significant down-

regulation of YIPF4 in HPV negative HFKs upon differentiation (Figure 3.7A). 
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Comparison of these differentiated HPV negative HFKs and the differentiated 

HFK HPV18 WT (donors 1 and 2) and E5 KO (donor 1) cell lines showed a 

significantly reduced level of YIPF4 transcript (p ≤ 0.05 and p ≤ 0.01). This 

correlated with the trend towards down-regulation observed on protein level 

(Figure 3.6B). Notably, the HPV18 WT and E5 KO cell lines showed a similar 

phenotype implying that YIPF4 transcript levels was not necessarily dependent 

on E5. The YIPF4 transcript levels in HFK HPV18 E5 KO cell line of donor 2 

was not significantly up-regulated compared to HPV negative cells, but followed 

the same trend (Figure 3.7A). The markedly decreased (p ≤ 0.01) cyclin A 

(Figure 3.7B) and HPV18 E7 (Figure 3.7C) transcript levels in all HFK cell lines 

after 72 h growth in MC medium confirmed the advanced differentiation of the 

cells investigated here. Thus, the YIPF4 transcript levels were reduced in HPV-

free HFK cell lines upon differentiation but they were rescued in the HPV18 

positive cells lines most likely independently of E5. 

  



116 

 

 

  

Figure 3.6 Quantitative approach to determine YIPF4 protein levels in differentiated HFK cell 

lines. A. HFK cell lines were grown in monolayers in MC medium for 0 h (control) and 48 h. 

Cells were lysed and total protein was separated by SDS-PAGE. YIPF4, differentiation 

marker HPV18 E7 and cyclin A and the loading control tubulin were detected on the Western 

blot with the respective antibodies. Representative blots are shown B. The relative YIPF4 

protein levels are illustrated as the ratio of YIPF4 and tubulin protein band intensities as 

measured using ImageJ. Each bar represents the mean (± SDM) of three independent 

replicates. A one-way ANOVA was performed *p ≤ 0.05 
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Figure 3.7 Effects of HFK cell line differentiation on YIPF4 transcript levels. HFK cell lines 

were grown in monolayer cell culture in MC medium. Total RNA was extracted at 0 h and 72 

h time points. The YIPF4 (A), cyclin A (B) and HPV18 E7 (C) transcript levels were 

determined by qPCR and normalised to the housekeeping gene U6. The transcript levels of 

every cell line are expressed in relation to their 0 h time points (= undifferentiated cell 

control). According to expectations, no HPV18 E7 transcripts were detected in the HPV18 

negative cell line HFK_3. Analysis of transcript levels was performed according to the ΔΔC
t
 

method. Each bar represents the mean (± SDM) of at least three replicates. A one-way 

ANOVA was performed, however, only selected p-values are shown. ** p ≤ 0.01 
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3.2.5.1. YIPF4 transcription could be regulated by HPV18 E2 

It was established that in differentiated cells, YIPF4 expression was rescued in 

HFK cells carrying HPV18 genomes (3.2.5). This was achieved independently 

of E5 implying that its proposed interaction with YIPF4 is most likely not 

responsible for the rescue. It is more likely that E2 plays a role in the 

transcriptional regulation of YIPF4 in differentiated cells since the E2 binding 

motif (ACCNNNNNNGGT) (Hines et al., 1998) was identified eight times in the 

YIPF4 gene sequence (Figure 3.8A). However, the nucleotides 4 – 9 of the 

binding motif showed little conservation within the gene sequence according to 

the sequence logo compiled of the potential E2 binding sequences in the YIPF4 

gene region (Figure 3.8).  

It is also possible that YIPF4 transcription is regulated by cellular proteins that 

are involved in transcriptional regulation and interact with HPV18 E2 (Figure 

3.8B). 
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PV type name and UniProt ID references 

HPV11,16,18 androgen receptor, P10275 (Wu et al., 2007a) 

HPV8, 16, 18, BPV1 CCAAT/enhancer-binding protein alpha, P49715 (Hadaschik et al., 2003) 

HPV18 CREB-binding protein, Q92793 (Lee et al., 2000) 

HPV18 histone acetyltransferase KAT2B, Q92831 (Lee et al., 2002) 

HPV11,16, 18 zinc finger protein PLAGL1, Q9UM63 (Wu et al., 2007b) 

HPV18 transcription activator BRG1, P51532 (Cha and Seo, 2011) 

HPV6, 11, 16, 18 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily B member 1, Q12824 
(Cha and Seo, 2011) 

HPV18, BPV1 
transcription initiation factor TFIID subunits 1 and 6, P21675 and 

P49848 
(Carrillo et al., 2004) 

HPV18, BPV1 TATA-box-binding protein, P20226 (Carrillo et al., 2004) 

Figure 3.8 YIPF4 transcription could be regulated by HPV E2. A. The YIPF4 gene sequence 

(NCBI Reference Sequence: NT_022184.15|:11324845-11353545) was searched for the HPV 

E2 binding motif (ACCNNNNNNGGT) using the GeneQuest software. Potential E2 binding 

positions and their sequences are shown (table). The sequence logo describes the relative 

frequency of the bp (i.e. height of symbol) and the overall sequence conservation (height of 

stack) of the potential E2BS in the YIPF4 gene sequence. Sequence logo was created with 

WebLogo (http://weblogo.berkeley.edu/logo.cgi). B. Suggestive list of HPV18 E2 interaction 

partners that regulate transcription and therefore are candidates for YIPF4 transcriptional 

regulation in HPV18 genome transfected cells. 

http://weblogo.berkeley.edu/logo.cgi
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3.2.6. Topology of YIPF4 

3.2.6.1. YIPF4 computational model comprised five TMDs 

YIPF4 is a highly hydrophobic protein but there is little experimental evidence 

for its membrane association and topology. The 5 TMD configuration, 

summarised in Figure 3.9, was purely based on computational predictions with 

the SOSUI online tool. The orientation of the hydrophilic N-terminus towards the 

cytoplasm and the C-terminus towards the lumen correlated with observations 

made for YIPF1, YIPF2 and YIPF3 (Shakoori et al., 2003). The 5 intervening 

TMDs were compiled of one secondary and four primary α-helices of 23 and 21 

amino acids, respectively (Figure 3.9A). A principally identical YIPF4 topology 

model was entered in the UniProt data base. It was based on several 

bioinformatics prediction tools (3.1.2). In this model all 5 TMD were of 21 amino 

acid length (Figure 3.9B). Thus, the analysis of the YIPF4 amino acid sequence 

with various bioinformatics prediction tools resulted in a 5 TMD topology model 

for YIPF4. 

 

3.2.6.2. YIPF4 enriched in the membranous fraction 

To experimentally evaluate the 5 TMD topology of YIPF4, first, the membrane 

protein nature of YIPF4 was investigated. For this, cells expressing endogenous 

as well as overexpressed, epitope tagged YIPF4 protein were partitioned into 

soluble and membranous protein fractions. The fractions were analysed by 

Western blot and the identity of the fractions confirmed with marker proteins 

(soluble fraction = GAPDH, membranous fraction = TfR and TGN46). 

Endogenous YIPF4 in BHK-21 cells was clearly confirmed as a membrane 

associated protein since it was detected in the membranous protein fraction 

(Figure 3.10A). The overexpression with two small epitope tags (N-terminal 

FLAG and C-terminal HA) (Figure 3.10B) and with the 27 kDa GFP tag (N-

terminus) (Figure 3.10C) did not alter the properties of YIPF4 as a membrane 

protein because it remained in the fraction of membranous proteins. Notably, 

overexpressed YIPF4 formed potential dimers in accordance with previous 

observations (Figure 3.1).  



121 

 

  

Figure 3.9 Computationally predicted membrane topology of YIPF4. A. The YIPF4 amino 

acid sequence (NCBI Reference Sequence: NP_115688.1) was analysed with the online-

tool SOSUI to predict its secondary structure. The software predicts 5 TMDs (upper panel). 

The protein regions predicted to span the membrane are indicated in the table below.’No.’ = 

number of TMDs. Amino acids colour legend: black = hydrophobic, blue = polar, bold blue = 

positive charge, bold red = negative charge. B. Similar YIPF4 topology model based on the 5 

potential TMDs published in UniProt (entry Q9BSR8, accessed Sept 2013). The table 

summarises the protein regions that form the TMDs. 
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Figure 3.10 YIPF4 enriched in the membranous fraction in a subcellular fractionation 

experiment. Cells (A, B, C) were lysed by sonication and the membranous proteins 

separated from the soluble proteins by ultra-centrifugation. Proteins of both fractions were 

separated by SDS-PAGE and the Western blot probed for YIPF4 and a marker for soluble 

proteins (GAPDH) and for membrane proteins (TfR, TGN46). A. BHK-21 cells were subject 

to subcellular fractionation. Endogenous YIPF4 was detected on the corresponding Western 

blot with the YIPF4 antibody. B. Dual epitope tagged YIPF4 (FLAG-YIPF4-HA) was 

overexpressed in BHK-21 cells using the recombinant vaccinia virus VTF7-3. Cells 

underwent subcellular fractionation 24 h post-transfection/infection. FLAG-YIPF4-HA was 

detected on the resulting Western blot with an anti-HA antibody. C. A GFP-YIPF4 fusion 

protein was exogenously expressed in HEK293T cells which were harvested for subcellular 

fractionation 16 h post-transfection. On the corresponding Western blot, GFP-YIPF4 was 

detected by probing for its tag with a GFP antibody. SF = soluble fraction, MF = 

membranous fraction, marker in kDa.  



123 

 

3.2.6.3. Investigation of YIPF4 TMDs with the differential, detergent 

permeabilisation assay 

3.2.6.3.1. Establishing the differential, detergent permeabilisation assay 

Since there is no experimental evidence for the predicted 5 TMD nature of 

YIPF4, a differential, detergent permeabilisation assay was established to 

experimentally investigate this topology model. The assay is an immuno-

cytochemistry approach that is based on the differential properties of two 

detergents: Triton X-100 permeabilises all cellular membranes while low 

concentrations of Digitonin selectively permeabilise the plasma membrane only 

(Figure 3.11A). The treatment of fixed cells with these detergents leads to 

different accesses for antibodies during the immuno-cytochemistry process.  

 

To verify this assay, Huh7 cells were stained for the cytoplasmic protein tubulin 

and the Golgi lumen protein mannosidase II (Figure 3.11B) with Triton X-100 

(Figure 3.11B, upper panel), Digitonin (Figure 3.11B, middle panel) and without 

detergent (Figure 3.11B, lower panel), respectively. The cytoplasmic tubulin 

could be detected in both, Triton X-100 and Digitonin permeabilised cells. In 

contrast, the Golgi luminal mannosidase II could only be detected in Triton X-

100 permeabilised cells not under selective Digitonin permeabilisation. Cells 

stained without detergent showed little plasma membrane permeabilisation 

since some tubulin staining could be detected. However, the principle of the 

differential, detergent permeabilisation proved successful and could be 

employed to experimentally investigate the TMD model of YIPF4 (3.2.6.3.3).  
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Figure 3.11Establishing a differential, detergent permeabilisation assay. A. Schematic representation of the differential, detergent permeabilisation 

assay. The detergent Triton X-100 permeabilises all cellular membranes while the detergent Digitonin selectively permeabilises the plasma membrane 

only. B. Huh7 cells were grown on cover slips, fixed and permeabilised with Triton X-100 (upper panel) or Digitonin (middle panel). No detergent was 

applied as negative control (lower panel). Cells were stained for tubulin (cytoplasma) and mannosidase II (Golgi lumen) with respective antibodies. 

DAPI (blue) was used to visualise the nuclei. Images were acquired with Zeiss LSM700 confocal microscope. mann. II = mannosidase II, Scale bar = 

20 μm 
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3.2.6.3.2. Generation of FLAG-YIPF4-HA truncation mutants 

YIPF4 truncation mutants were generated to enable the investigation of the 

TMD topology with the differential, detergent permeabilisation assay (3.2.6.3.3). 

The truncation mutants were designed to contain an N-terminal FLAG epitope 

tag (Figure 3.12A). The predicted TMDs entered in the UniProt database 

(Figure 3.9B) were serially truncated from the C-terminus and replaced with a 

HA epitope tag resulting in truncation mutants with two epitope tags. In the 

Del1-109 mutant the hydrophilic N-terminus was replaced with a FLAG epitope 

tag. The theoretical molecular weights of the truncated proteins were calculated 

with the ‘Protein Molecular Weight Calculator’-online tool.  

 

The truncations and epitope tags were introduced with specific primers in PCRs 

using the full-length YIPF4 nucleotide sequence as template. The PCR products 

were cloned into the destination vector pcDNA3.1(+). The correct sizes of the 

cloned inserts were confirmed by restriction digest (Figure 3.12B) and sequence 

analysis (data not shown).  

All YIPF4 truncation mutants were successfully expressed with both tags 

(Figure 3.12C). The expression efficiency of truncation mutants FLAG-YIPF4-

HA S138, FLAG-YIPF4-HA G117 and FLAG-YIPF4-HA Del1-109 (Figure 3.12C, 

lanes 5-7) was lower compared to the remaining truncation mutants because 

increased amounts of total protein were needed for detection. Overall, the sizes 

of the truncation mutants agree with the predicted molecular weight and are in 

relation to each other. The FLAG-YIPF4-HA Del1-109 mutant, however, was of 

smaller size than expected (compare to FLAG-YIPF5-HA S138), although the 

expression construct was error-free (Figure 3.12B). The truncation mutant 

FLAG-YIPF4-HA G117 (lane 6) appeared to express less FLAG epitope than 

HA epitope when comparing the band intensities on the corresponding Western 

blots although again, the expression construct was free from error.  
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Figure 3.12 Generation of YIPF4 truncation mutants attaching an N-terminal FLAG and a C-

terminal HA tag. A. Schematic representation of the YIPF4 truncations mutants with their N-

terminal FLAG and C-terminal HA tags. The designated name for each truncation mutant is 

indicated on the left and consists of the one letter amino acid code and number of the final 

amino acid before truncation. The Del1-109 truncation mutants forms an exemption (Del = 

deletion of amino acids 1 to 109). Grey boxes represent potential TMD and black lines 

indicate luminal (subscript) and cytoplasmic (superscript) sites (based on UniProt entry 

Q9BSR8). The predicted molecular weights of the truncation mutants are indicated on the 

right. B. The FLAG and HA tags were added to the YIPF4 sequence with PCR primers which 

also truncated the full-length YIPF4. Truncated YIPF4 sequences were cloned into 

pcDNA3.1(+). Correct insert sizes were verified by restriction digests with BamHI and HindIII. 

C. FLAG-YIPF4-HA truncation mutants were exogenously expressed in BHK-21 cells using 

the vaccinia virus VTF7-3. Samples were separated by SDS-PAGE and the overexpressed 

YIPF4 detected with antibodies against both its tags.  
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3.2.6.3.3. The differential, detergent permeabilisation assay revealed that three 

TMDs were required for YIPF4 membrane association in cells  

The full-length FLAG-YIPF4-HA and the truncation mutants were 

overexpressed in Huh7 cells and subject to the differential, detergent 

permeabilisation assay to investigate YIPF4 membrane topology. Most FLAG-

YIPF4-HA mutants showed an ER-like and to some extend nuclear envelope 

distribution (Figure 3.13 - Figure 3.18). Due to insufficient expression level, the 

mutant FLAG-YIPF4-HA Del1-109 could not be analysed in this assay.  

 

According to the computational topology model of YIPF4, the cytoplasmic N-

terminus is followed by 5 TMDs and a luminal C-terminus (Figure 3.9) (Shakoori 

et al., 2003). The truncations of YIPF4 were designed from the C-terminus 

(Figure 3.12A). This left the N-termini of all truncation mutants (except Del1) 

exposed to the cytoplasm. In the differential, detergent permeabilisation assay, 

this meant that the N-terminal FLAG tags of all truncation mutants should be 

detectable in Triton X-100 and Digitonin permeabilised cells (Figure 3.13 - 

Figure 3.18). Indeed, the FLAG staining was observed for the full-length V244 

(Figure 3.13B) as well as the K223 (Figure 3.14B), S195 (Figure 3.15B), Q166 

(Figure 3.16B), S138 (Figure 3.17B) and G117 (Figure 3.18B) truncation 

mutants in Triton X-100 and Digitonin permeabilised cells. Thus, the 

cytoplasmic orientation of the hydrophilic N-terminus could be confirmed in 

accordance with the computational model (Figure 3.9) (Shakoori et al., 2003).  

 

The Person correlation coefficient (PCC) of the FLAG and HA staining of every 

mutant was calculated with the PSC plug-in for ImageJ to determine the 

orientation of the (truncated) C-termini. In Digitonin permeabilised cells, a 

marked decrease of the PCC value compared to Triton X-100 treated cells 

indicated a luminal HA epitope/C-terminus. An equal PCC value between 

Digitonin and Triton X-100 permeabilised cell was indicative for a cytoplasmic 

HA tag/C-terminus. Non-permeabilised cells were stained as negative controls.  

 

For the C-terminus, the computational topology model of YIPF4 predicts a 

luminal orientation (Figure 3.13A). This was tested with the full-length FLAG-

YIPF4-HA V244 protein (Figure 3.13B). The PCC value in Digitonin 
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permeabilised cells (0.52) was clearly decreased compared to the PCC value in 

Triton X-100 permeabilised cells (0.92). This supported the exposure of the C-

terminus to the luminal side of the organelle.  

 

The K223 truncation mutant of YIPF4 is characterised by the truncation of the 

most C-terminal TMD (Figure 3.14A). According to the computational model, 

this removal places the truncated C-terminus to the cytoplasmic side of the 

organelle membrane. The examination of the K223 truncation mutant in the 

differential, detergent permeabilisation assay indeed resulted in similar PCC 

values (Digitonin = 0.79, Triton X-100 = 0.93) (Figure 3.14B). Together with the 

data from the full-length V244 protein (Figure 3.13), the existence of an outside-

in orientated C-terminal TMD was verified. 

 

A further potential TMD was truncated from the C-terminal side in the S195 

truncation mutant (Figure 3.15A). Referring to the full-length YIPF4 protein this 

depicts a truncation of 2 C-terminal TMDs. The even number of truncated TMDs 

predicted a luminal orientation of the truncated C-terminus. The S195 showed a 

substantially decreased PCC value in Digitonin permeabilised cells (0.41) 

compared to Triton X-100 permeabilised cells (0.88) (Figure 3.15B). This 

confirmed the luminal orientation of the S195 residue as predicted from the 

computational model.  

 

The data from the full-length V244 and the K223 and S195 truncation mutants 

thus far verified the presence of the two most C-terminal TMDs of YIPF4. The 

last TMD spans the membrane between amino acid residue 223 and 244 from 

the outside-in and the second to last TMD spans the membrane between amino 

acids 195 and 223 from the inside-out.  

 

The Q166 truncation mutant was designed to truncate an additional TMD from 

the C-terminus (Figure 3.16A) which depicted an overall truncation of 3 TMDs 

referring to the full-length YIPF4 protein. The examination of the Q166 

truncation mutant in the differential, detergent permeabilisation assay resulted 

in comparable PCC values in Digitonin (0.83) and Triton X-100 (0.91) 

permeabilised cells (Figure 3.16B). This was clearly indicative of a cytoplasmic 
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orientation of the Q166 amino acid residue. This also implied that the amino 

acids between position 166 and 195 span the membrane from the outside-in.  

 

A further potential TMD was truncated in the S138 mutant which depicted a 

truncation of a total of 4 potential TMDs from the C-terminus referring to the full-

length protein (Figure 3.17A). This even number implied that S138 faces the 

luminal side of the organelle like S195 and V244. The differential, detergent 

permeabilisation assay, however, revealed similar PCC values for Digitonin 

(0.76) and Triton X-100 (0.85) permeabilised cells (Figure 3.17B). This is 

indicative of a cytoplasmic orientation of the S138 amino acid. In contrast to the 

computation model, it is therefore to assume that the amino acids 138 – Q166 

do not from a membrane spanning domain.  

 

The final mutant investigated in this assay, G117, was developed by truncating 

all potential TMDs from the C-terminus. Thus, it consists only of the hydrophilic 

N-terminus of YIPF4 (Figure 3.18A). Logically, this was predicted to be localised 

in the cytoplasm. The differential, detergent permeabilisation assay indeed 

resulted in similar PCC values in Digitonin (0.81) and Triton X-100 (0.90) 

permeabilised cells (Figure 3.18B). However, due to the fact that S138 was 

aberrantly detected in the cytoplasm (Figure 3.17B), it is unlikely that a 

membrane spanning domain is formed between the cytosolic amino acids 117 

and 138.  

 

It was worthy of note that the cellular distribution of both S138 (Figure 3.17B, 

upper panel) and G117 (Figure 3.18B) differed from the ER-like distribution of 

the other truncation mutants. In Triton X-100 permeabilised cells, these 

truncation mutants depicted a wide distribution throughout the cell including the 

nucleus. But some examples of ER-like staining were also found (Figure A. 1).  

 

In summary, the investigation of the full-length YIPF4 protein V244 and the 

truncation mutants K223, S195, Q166, S138 and G117 in the differential, 

detergent permeabilisation assay did not agree completely with the predicted 5 

TMDs model of YIPF4. In this assay, only the amino acids between 166 - 195, 
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195 – 223 and 223 – 244 were confirmed to form TMDs. The amino acids 

between 117 – 138 and 138 – 166 did not span the membrane as predicted.  

 

The analysis of the PCC values of two independent experiments supported this 

finding (Figure 3.19). It became obvious that only the PCC values of the full-

length V244 and the truncation mutant S195 were significantly decreased in 

Digitonin permeabilised cells compared to Triton X-100 permeabilised cells (p ≤ 

0.01) implying their luminal orientation. The expected decrease of the PCC 

value of Digitonin permeabilised cells expressing the S138 mutant (Figure 3.19, 

highlighted in green) was not detected. The PCC values of the negative controls 

(= no detergent) showed similar PCC values as the Digitonin permeabilised 

cells. It was previously observed (Figure 3.11) that non-detergent treated cells 

exhibited some permeabilisation of the cell membrane. This could have been 

caused by the fixation of cells prior to staining.  
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Figure 3.13 Examining the full-length FLAG-YIPF4-HA V244 protein in the differential, detergent permeabilisation assay. A. Schematic representation 

of the differential, detergent permeabilisation assay with overexpressed full-length FLAG-YIPF4-HA V244 in its predicted 5 TMD topology. B. Huh7 

cells were grown on cover slips and transfected with full-length FLAG-YIPF4-HA V244. After 16 h, cells were fixed and differentially permeabilised with 

Triton X-100 (upper panel) and Digitonin (middle panel). No detergent was applied as negative control (lower panel). Cells were co-stained with FLAG 

and HA antibodies. DAPI (blue) was used to visualise the nuclei. Samples were viewed with a Zeiss LSM700 confocal microscope. The co-localisation 

of the FLAG and HA tag was determined using the PSC plug in for ImageJ which calculated the PCC value and generated the scatterplot. 

Representative images are shown. Scale bar = 20 μm 
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Figure 3.14 Examining the FLAG-YIPF4-HA K223 truncation mutant in the differential, detergent permeabilisation assay. A. Schematic representation 

of the FLAG-YIPF4-HA K223 truncation mutant in the differential, detergent permeabilisation assay. B. Huh7 cells were grown on cover slips and 

transfected with FLAG-YIPF4-HA K223. The assay was carried out as described in legend to Figure 3.13. Representative images are shown. Scale bar 

= 20 μm 
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Figure 3.15 Examining the FLAG-YIPF4-HA S195 truncation mutant in the differential, detergent permeabilisation assay. A. Schematic representation 

of the FLAG-YIPF4-HA S195 truncation mutant in the differential, detergent permeabilisation assay. B. Huh7 cells were grown on cover slips and 

transfected with FLAG-YIPF4-HA S195. The assay was carried out as described in legend to Figure 3.13. Representative images are shown. Scale bar 

= 20 μm 
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Figure 3.16 Examining the FLAG-YIPF4-HA Q166 truncation mutant in the differential, detergent permeabilisation assay. A. Schematic representation 

of the FLAG-YIPF4-HA Q166 truncation mutant in the differential, detergent permeabilisation assay. B. Huh7 cells were grown on cover slips and 

transfected with FLAG-YIPF4-HA Q166. The assay was carried out as described in legend to Figure 3.13. Representative images are shown. Scale 

bar = 20 μm 
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Figure 3.17 Examining the FLAG-YIPF4-HA S138 truncation mutant in the differential, detergent permeabilisation assay. A. Schematic representation 

of the FLAG-YIPF4-HA S138 truncation mutant in the differential, detergent permeabilisation assay. B. Huh7 cells were grown on cover slips and 

transfected with FLAG-YIPF4-HA S138. The assay was carried out as described in legend to Figure 3.13. Representative images are shown. Scale bar 

= 20 μm 



 

136 

Figure 3.18 Examining the FLAG-YIPF4-HA G117 truncation mutant in the differential, detergent permeabilisation assay. A. Schematic representation 

of the FLAG-YIPF4-HA G177 truncation mutant in the differential, detergent permeabilisation assay. B. Huh7 cells were grown on cover slips and 

transfected with FLAG-YIPF4-HA G117. The assay was carried out as described in legend to Figure 3.13. Representative images are shown. Scale 

bar = 20 μm 
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Figure 3.19 Summary of results from the differential, detergent permeabilisation assay. The 

bar chart compiles the PCC values of the YIPF4 truncation mutants in the differential, 

detergent permeabilisation assay. Each bar represents the mean PCC value (± SDM) of 

several cells of two independent repetitions. A one-way ANOVA was performed. **p ≤ 0.01, 

only selected p-values are shown. The schematic view of the full-length FLAG-YIPF4-HA 

indicates the position of where the data from the differential, detergent permeabilisation 

assay digresses from the computational 5 TMD model of YIPF4 (green shadow). The red 

subscript line describes the computationally predicted position of the hydrophilic linker while 

the black superscript line indicates the position of the hydrophilic linker according to the 

differential, detergent permeabilisation assay.Questionable TMDs are depicted with dashed 

grey boxes.  
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The findings from the differential, detergent permeabilisation assay implied that 

YIPF4 forms 3 TMDs only (Figure 3.20B) and questioned the predicted 5 TMD 

model of YIPF4 (Figure 3.20A). It was interesting to note that the 1st and 3rd 

TMDs of this proposed 3 TMD model of YIPF4 overlap with 2 of the predicted 

TMDs of the yeast homologue Yip1p (Figure 3.20C).  

 

The YIPF4 full-length and truncation mutants were additionally examined in a 

subcellular fractionation experiment (Figure 3.21). BHK-21 cells overexpressing 

these proteins were fractioned into a soluble and membranous fraction. These 

were analysed on a Western blot where the fractions were successfully 

identified with the marker proteins tubulin (soluble fraction) and transferrin 

receptor (membranous fraction). Truncation mutants that form TMDs were 

expected to accumulate in the membranous fraction.  

Indeed, the full-length V244 (Figure 3.21, lane 2) and K223 (Figure 3.21, lane 4) 

almost exclusively enriched in the membranous fraction as the amino acids 223 

– 244 were shown to span the membrane from the outside-in in the differential 

detergent permeabilisation assay (Figure 3.13 and Figure 3.14). Also, the 

majority of the S195 (Figure 3.21, lane 6) and Q166 (Figure 3.21, lane 8) 

truncation mutants accumulated in the membranous fraction in accordance with 

the observation made in the differential, detergent permeabilisation assay 

(Figure 3.15 and Figure 3.16). It was very obvious that the S138 truncation 

mutant predominantly enriched in the soluble fraction (Figure 3.21, lane 9). This 

agrees with the fact that no anchoring TMD between amino acids 117 – 138 

was found to be formed in the differential, detergent permeabilisation assay 

(Figure 3.17 and Figure 3.18). The G117 truncation mutants appeared to be 

equally distributed amongst the soluble and membranous fraction (Figure 3.21, 

lane 11, 12). A clearer enrichment in the soluble fraction would have been 

predicted concluding from the differential, detergent permeabilisation assay 

(Figure 3.18). The Del1-109 mutant was generated to lack the hydrophilic N-

terminus of YIPF4. In accordance with this, the majority of Del1-109 protein 

accumulated in the membranous fraction (Figure 3.21, lane 14). Due to low 

expression levels when expressed transiently in Huh7 cells, it could not be 

investigated in the differential, detergent permeabilisation assay. However, its 
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enrichment in the membranous fraction agrees with the proposed model of 

YIPF4.  

 

In general, the hydrophobic and hydrophilic properties of the truncation mutants 

mostly agree with the 3 TMD model of YIPF4 developed from the differential, 

detergent permeabilisation assay. They therefore depict first evidence towards 

the establishment of a new TMD model of YIPF4 as a representative for the 

YIP1 protein family. 
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Figure 3.20 Juxtaposition of computational and evidence-based YIPF4 models. A. The 5 

TMD model of YIPF4 is purely based on computational predictions. B. The 3 TMD model of 

YIPF4 was established with the data from the differential, detergent permeabilisation assay. 

C. Pairwise alignment with ClustalW2 of human YIPF4 and its yeast homologue Yip1p. Black 

lines = positions of YIPF4 TMD according to 5 TMD model (A), underlining in YIPF4 

sequence = positions of 3 TMDs observed in differential, detergent permeabilisation assay 

(B), underlining in Yip1p sequence = predicted TMDs according to Yang et al., 1998, amino 

acid colour legend: red = small and hydrophobic (including aromatic without Y), blue = 

acidic, magenta = basic- without H, green = hydroxyl, sulfhydryl, amine including G; * = 

single, fully conserved residue, : = conservation between groups of strongly similar 

properties, . = conservation between groups of weakly similar properties 
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Figure 3.21 Membrane association of the FLAG-YIPF4-HA truncation mutants. FLAG-YIPF4-

HA truncation mutants were expressed in BHK-21 cells using the VFT7-3 vaccinia virus. 

Cells were harvested 24 h post-transfection/infection and the soluble and membranous 

proteins were separated by ultra-centrifugation. On the Western blot, the FLAG-YIPF4-HA 

truncation mutants were detected with a HA antibody. TfR = marker for membranous 

fraction, tubulin = marker for soluble fraction. SF = soluble fraction, MF = membranous 

fraction, marker in kDa  
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3.3. Discussion 

3.3.1. Expression profile of YIPF4 

3.3.1.1. YIPF4 is expressed in various cell lines  

To the best of our knowledge, this is the first confirmation of YIPF4 protein 

expression in a multitude of different cell lines (Figure 3.1 and Figure 3.3). So 

far, the only evidence for YIPF4 protein expression came from HeLa cells 

(Tanimoto et al., 2011). Its expression levels did not vary dramatically amongst 

the tested cell lines (Figure 3.1 and Figure 3.3). 

No splicing variants could be detected by qPCR since the primers used did not 

span a potentially alternatively spliced region. Thus, the existence of multiple 

splicing variants as seen in a Northern blot approach (Shakoori et al., 2003) is 

theoretically possible. However, the presence of a single mRNA variant agrees 

with the Western blot detection of one clear band of the appropriate size for 

YIPF4. There is no hint of a different splicing form or major post-translational 

modifications as suggested by large-scale mass spectrometry observations 

(Hornbeck et al., 2004).  

 

Endogenous YIPF4 exists as a monomer and only when overexpressed (Figure 

3.1A, Figure 3.10B+C), it seems to form an additional potential dimer 

(approximately 58 kDa). The dimerisation could be mediated by a disulphide 

bond between their C94. However, since proteins were analysed by reducing 

SDS-PAGE, a hydrophobic interaction is more likely which could be caused by 

‘flooding’ the cell with this protein. The potential dimer may therefore be an 

artefact of overexpression. However, YIPF4 is known to form large protein 

complexes of unknown composition with its paralogue YIPF3 (Tanimoto et al., 

2011). These were not observed under the SDS-PAGE conditions used in this 

study. It is conceivable that endogenous YIPF4 self-associates within these 

complexes. A strong self-association was also observed for its paralogue YIPF6 

in mice (Brandl et al., 2012). Although an endogenous YIPF4 dimer or protein 

complex could not be observed under the employed conditions, it cannot be 

excluded that endogenous YIPF4 self-associates to form dimer or higher order 

oligomers in vivo. 



143 

 

At the same time, a near loss of endogenous YIPF4 protein was observed in the 

myc-YIPF4 overexpressing cells (Figure 3.1A). It is conceivable that the 

overexpressed YIPF4 replaces endogenous YIPF4. A similar phenomenon was 

seen when overexpressing epitope tagged YIPF3 in HeLa cells (Tanimoto et al., 

2011) which could be explained by the saturation of the cell with this protein.  

 

The YIPF4 protein expression profile underlines the large-scale microarray data 

that described YIPF4 mRNA expression in a multitude of human tissues (MGC, 

2004, Ohira et al., 2003, Ota et al., 2004) (summarised at http://biogps.org/). It 

also implies that YIPF4 is highly conserved amongst species since YIPF4 

protein was detected in monkey and hamster kidney cell lines using the 

commercial antibody raised against the hydrophilic N-terminus of human YIPF4. 

Indeed, YIPF4 proteins of several animals have previously been identified and 

show a high grade of conservation when aligned to human YIPF4 (Figure A. 2). 

This study, however, reports first evidence of a potential hamster YIPF4 protein 

(Figure 3.1, lane 13). To validate its identity, mass spectroscopy identification or 

sequencing of its cDNA can be employed. Similar cross-reactivities of 

antibodies were previously observed for other mammalian YIP1 family 

members. An antibody raised against rat YIF1B cross-reacted with porcine 

YIF1B (Carrel et al., 2008) and an antibody raised against murine YIPF5 

recognised YIPF5 in HeLa, Vero and normal rat kidney cells (Kano et al., 2009, 

Tang et al., 2001). It is therefore highly likely that the protein of approximately 

27 kDa identified in the BHK-21 cell lysate with the antibody raised against 

human YIPF4 is indeed hamster YIPF4.  

 

Despite the fact that the cellular role of YIPF4 is not understood yet, the 

expression of the protein in every cell line tested and its high grade of 

conservation suggest it might exert important housekeeping functions. Indeed, 

its paralogue YIPF5 has been proposed to function as a housekeeping gene 

because it is predicted to be transcribed from a characteristic TATA-box less 

promoter (Stolle et al., 2005). Further research is needed to determine the 

cellular functions of YIPF4 and further YIP1 family members.  
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3.3.1.2. YIPF4 is expressed in cells and sites relevant to HPV infection 

Of great significance for the further course of this study was the validation of 

YIPF4 protein expression in cells that are theoretically susceptible and 

permissive to HPV infection (C33A, HaCaT, HFK) and cells that already carry a 

HPV genome (HPV16 = CaSki, SiHa; HPV18 = HeLa, HFK HPV18) (Figure 3.1 

and Figure 3.3). Also, YIPF4 protein was clearly identified in clinical samples of 

HPV16 induced CIN1 and CIN3 lesions (Figure 3.5). But co-staining for more 

viral proteins is required to confirm the presence of YIPF4 in the same cells. Co-

staining for its potential interaction partner 16E5 is currently not possible due to 

the lack of an effective E5 antibody. These findings nevertheless provide the 

crucial confirmation that YIPF4 is indeed expressed in sites relevant for HPV 

pathogenesis.  

Above all, its expression in CaSki cells is an important evidence to justify the 

interaction of 16E5 with YIPF4 that was seen in Y2H system, LUMIER assay 

and TAP-MS (1.7). This is because, in contrast to SiHa cells, 16E5 protein 

expression could be confirmed by mass spectrometry in CaSki cells (Sahab et 

al., 2012). 

 

3.3.1.3. YIPF4 might play a role in the productive phase of the HPV life-

cycle 

In undifferentiated HFKs, YIPF4 protein expression is not regulated differently in 

HPV18 negative and positive cells (Figure 3.3) suggesting that it might not be 

directly involved or needed for HPV genome maintenance.  

We obtained some indication that in differentiated HFK HPV18 cells and thus in 

the productive phase of the HPV life-cycle, YIPF4 protein is slightly up-

regulated or rescued compared to untransfected HFKs (Figure 3.6). This up-

regulation was also confirmed on transcript level (Figure 3.7). This could imply a 

role for YIPF4 during genome amplification and/or virus assembly and/or 

release.  

 

Notably, this effect was only seen in the MC differentiation model and not in the 

organotypic raft cultures (Figure 3.4). In the organotypic raft cultures YIPF4 
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protein was expressed in the basal, suprabasal and granular cell layers in 

untransfected HFKs to the same extend as in HFK HPV18 cells. Thus, there 

appears to be a discrepancy between these two in vitro models.  

The differentiation of cells in organotypic raft cultures is induced by lifting the 

cell culture onto an air-liquid interface (Wilson and Laimins, 2005). This faithfully 

recapitulates epithelial cell differentiation allowing for generation of ample 

amounts of infectious virus stocks of HPV16 (McLaughlin-Drubin et al., 2004), 

HPV18 (Meyers et al., 1997), HPV31b (Ozbun and Meyers, 1997) and HPV45 

(McLaughlin-Drubin et al., 2003). This system is therefore capable of supporting 

the entire HPV life-cycle although it is prone to variability. 

The cell differentiation in MC cultures is induced by loss of contact to the culture 

dish (Wilson and Laimins, 2005). The use of a late p670 promoter luciferase 

reporter confirmed transcription of late HPV16 genes in this system (Bodily et 

al., 2013). A Northern blot approach revealed the transcription from the late 

HPV31 promoter p742 (Ruesch et al., 1998) and the expression of cellular 

differentiation markers involucrin and transglutaminase were demonstrated. 

However, no significant amounts of L1 protein could be observed. This 

establishes the fact that the monolayer MC cell differentiation model only allows 

limited completion of the HPV life-cycle.  

The organotypic raft cultures are more faithful models for cell differentiation and 

the complete HPV life-cycle but protein and transcript expressions are harder to 

quantify than in MC cultures. The stratified nature of the raft cultures hardly 

allows the investigation of separated cell layers. In this study, the YIPF4 protein 

expression was attempted be quantified by fluorescence intensity profiles 

(Figure 3.4C) on a limited number of histological sections. This approach, 

however, does not correct for different cell numbers and positions in the section 

and it does not give the possibility to normalise to a reference protein.  

On the contrary, the monolayer MC cell cultures are characterised by uniformity 

in cell differentiation. It is easily possible to extract ample amounts of protein 

and RNA. The determination of protein levels by densitometry analysis of 

Western blots (Figure 3.6B) and especially the evaluation of transcript levels by 

qPCR (Figure 3.7A) are more convincing methods for YIPF4 quantification.  
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In line with the more meaningful data obtained from the MC differentiation 

model, YIPF4 might be directly or indirectly up-regulated by HPV proteins or 

might play a role in the HPV life-cycle.  

Since nothing is known about YIPF4 transcriptional regulation, the natural 

hypothesis would be to suspect the potential interaction with 16E5 as the cause 

for the rescue of YIPF4 mRNA and protein levels. Indeed, 16E5 was shown to 

up-regulate COX-2 expression by enhancing its promoter activity mainly as a 

result of EGF-R signalling pathway and NF-κB binding (Kim et al., 2009). 

Therefore, an indirect up-regulation of YIPF4 mRNA and protein by E5 is 

conceivable. 16E5 was also shown to have an effect on protein half-life when 

reducing the half-life of p27Kip1 via the EGF-R pathway (Pedroza-Saavedra et 

al., 2010) and targeting CD1d for proteasomal degradation (Miura et al., 2010). 

Thus, an effect of 16E5 on YIPF4 half-life is feasible. However, the regulation of 

YIPF4 transcript and protein expression is likely to be independent of its 

proposed binding to E5 (3.2.5, 3.2.5.1).  

 

Therefore, another hypothesis for the HPV controlled YIPF4 regulation 

emerges. The transcription of YIPF4 might be promoted by the HPV E2 protein 

(Figure 3.8) because it has well characterised functions in transcriptional 

regulation (McBride, 2013).  

Transcriptional regulation by 16E2 was observed for a multitude of host genes 

in a microarray approach (Ramirez-Salazar et al., 2011). 16E2 was expressed 

from an adenoviral vector in C33A cells and the down-regulation of 1048 and 

up-regulation of 581 host genes was observed. However, YIPF4 or other 

immediate YIP1 family members were not amongst the regulated genes in this 

approach.  

Also, functional and biochemical analysis confirmed an interaction of 18E2 with 

a variety of cellular proteins that regulate transcription (Figure 3.8B). It is 

conceivable that YIPF4 transcription is regulated by any of these proteins and a 

chromatin immuno-precipitation approach might help elucidating this. 

 

Very interestingly, the YIPF4 gene region has eight potential E2BS (Figure 

3.8A). The markedly increased YIPF4 transcription (Figure 3.7A) and thus the 

slightly increased protein levels (Figure 3.6B) could thus also be caused by 
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direct binding of the E2 protein to YIPF4 regulatory sequences. A direct 

transcriptional up-regulation by HPV E2 was indeed observed for several host 

genes. The expression of the host splicing protein SF2/ASF was activated by 

the binding of 16E2 to its regulatory sequence as shown by chromatin immuno-

precipitation and electrophoretic mobility shift assay (Mole et al., 2009). Also, 

the activity of the interleukin-10 promoter was shown to be increased by binding 

of 16E2 protein (Bermúdez-Morales et al., 2011). A reporter gene assay 

revealed that increased matrix metalloproteinase-9 promoter activity is directly 

induced by the HPV8 E2 protein in a dose-dependent manner (Akgül et al., 

2011).  

However, E2 protein favours an A/T-rich spacer in the consensus DNA-binding 

site (Dell et al., 2003) which is only given in two (bp 12839-12850, 27482-

27493, Figure 3.8A) of the eight potential E2BS in the YIPF4 gene region. In 

addition to that, E2 binding and transcriptional regulation of host genes was 

reported to be a rare event. A computational analysis identified 3388 potential 

E2BS in the human genome, however, only a minority was indeed accessible to 

11E2 and cellular transcription was not affected for selected genes in SiHa, 

HaCaT and U-2 OS cells (Võsa et al., 2012).  

Thus, the potential transcriptional regulation of YIPF4 by HPV E2 proteins 

needs to be investigated e.g. with chromatin immuno-precipitation and a 

reporter assay.   
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3.3.2. YIPF4 topology and cellular localisation 

The investigation of YIPF4 topology with the differential, detergent 

permeabilisation assay was the first time experimental evidence has been 

generated for the complete membrane topology of a YIP1 family member 

(Figure 3.13 - Figure 3.19).  

It confirmed the overall orientation of the N-terminus facing the cytoplasm and 

the C-terminus facing the organelle lumen which was previously determined by 

others for YIPF1, YIPF2 and YIPF3 (3.1.2) (Shakoori et al., 2003). However, it 

suggests the formation of 3 TMDs rather than the predicted 5 TMDs. Three 

TMDs were also proposed for its homologue in yeast, Yip1p, (Yang et al., 1998) 

but the positions of the TMDs do not agree entirely (Figure 3.20C). 

The SOSUI model denotes the most N-terminal TMD (amino acids 112-134) as 

a secondary TM helix which is characterised by high hydrophilicity (Hirokawa et 

al., 1998). In the 3 TMD model established here, this region does not form a 

membrane spanning domain but it is assumed to at least partially reside in the 

membrane. This is supported by the cellular distribution of the S138 and G117 

truncation mutants when overexpressed in Huh7 cells. In some cells, they show 

soluble-protein-like distribution throughout the cells, including the nucleus 

(Figure 3.17B and Figure 3.18B), and in others, their localisation appears ER-

like which requires membrane association (Figure A. 1). A similar observation 

was made for GFP tagged truncation mutants of the YIP1 family member YIF1A 

(Jin et al., 2005). The truncation mutant consisting of the hydrophilic N-terminus 

only was diffuse throughout the cell while the truncation mutant comprising the 

hydrophobic C-terminus showed an ER-like staining pattern. Thus, the cellular 

localisations of the YIPF4 truncation mutants agree with observations made on 

YIF1A and the hydrophilic properties of a secondary TM helix according to the 

SOSUI computational prediction. This secondary TM helix has great potential of 

mediating protein-protein interactions (Hirokawa et al., 1998) or exerting other 

yet unknown functions of YIPF4. 

 

There is, however, the possibility that the folding of YIPF4 is altered by the 

truncations made to the protein in this assay. More experimental evidence, 

http://www.dict.cc/englisch-deutsch/hydrophilicity.html
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ideally a crystal structure, needs to be established to firmly validate the 3 TMD 

topology of YIPF4. 

 

The membrane topology of its potential interaction partner 16E5 was 

investigated in a similar fashion determining its orientation in the membrane and 

partially confirming its 3 TMD model (Krawczyk et al., 2010). Thus, both YIPF4 

and 16E5 are membrane proteins. Their interaction is therefore likely to be 

mediated by either their hydrophobic TMD or their hydrophilic, cytoplasm 

exposed termini. Also, both proteins are known to localise at the Golgi making 

their interaction probable (Figure 3.4B) (Schapiro et al., 2000, Tanimoto et al., 

2011).  

 

YIPF4 was shown to localise at the trans-Golgi network in SiHa cells (Figure 

3.4B) which is in contrast to its firmly established localisation at the cis-Golgi in 

HeLa cells (Tanimoto et al., 2011). YIPF4 cellular localisation might differ 

between cell lines or the HPV18 proteins in HeLa cells and the HPV16 proteins 

in SiHa cells might induce slight alterations to its localisation. The staining with 

the cis-Golgi marker GM130 was not successful in this study (data not shown). 

Thus it cannot be excluded that YIPF4 also partially localises to the cis-Golgi in 

SiHa cells.  

 

YIPF4 shows a distribution that resembles ER and sometimes nuclear envelope 

staining when overexpressed and epitope tagged in Huh7 cells (Figure 3.13 - 

Figure 3.18). The ER localisation of overexpressed, GFP tagged YIPF4 was 

also observed in an automated immuno-fluorescence approach (Simpson et al., 

2000). So clearly, overexpression alters the subcellular localisation of this 

protein. A possible explanation for this ER and nuclear envelope distribution is 

that the protein cannot form complexes with its cellular binding partners e.g. 

YIPF3, and therefore accumulates in the ER (Tanimoto et al., 2011). This was 

observed for other members of the YIP1 family (Andrulis et al., 1998, Shakoori 

et al., 2003, Yang et al., 1998).  

However, we could show that overexpression does not have an effect on the 

membrane association of YIPF4 (Figure 3.10) so the differential, detergent 

permeabilisation assay remains valid.   
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To further confirm that the integral membrane property of YIPF4 is not affected 

by its epitope tags, the subcellular fractionation into membranous and soluble 

proteins can be repeated under treatment of disrupted cells with high salt, high 

Urea, alkaline pH and detergent (Matern et al., 2000). YIPF4 as an integral 

membrane protein rather than a membrane associated protein is only expected 

to solubilise in the presence of detergent. Also, a phase separation assay is 

conceivable (Bordier, 1981) to firmly establish the integral membrane properties 

of YIPF4. These assays could also be employed on the FLAG-YIPF4-HA 

truncation mutants to further support the membrane association seen in the 

subcellular fractionation experiment (Figure 3.21). 

 

The truncation mutant FLAG-YIPF4-HA Del1-109 could not be investigated in 

the differential, detergent permeabilisation assay since its expression was 

extremely low for unknown reasons. A similar unexplained low expression was 

observed with FLAG-YIPF4-HA S138 and G117 (Figure 3.12). Others observed 

that the overexpression efficiency of YIPF5, YIPF6 and YIF1B in HeLa cells was 

limited (Shakoori et al., 2003). Also, YIPF5 deletion mutants were not stable 

and even a single amino acid substitution in the predicted 3rd and 4th TMDs 

resulted in a highly unstable protein (Dykstra et al., 2013). This indicates that 

different parts of the YIP1 proteins mediate protein stability maybe due to 

correct folding. It is conceivable that the YIPF4 truncation mutants Del1-109, 

G117 and S138 are degraded because of folding into a less stable protein. 

Indeed, cell treatment with the proteasome inhibitor MG132 increased the 

overall GFP-YIPF4 S138, G117 and Del1-109 levels in Huh7 cells indicating 

that the truncation mutants are increasingly degraded by the proteasome 

(Figure A. 3). A correct folding of YIPF4 ‘truncation’ mutants might be 

achievable by replacing the ‘truncated’ sequence with repetitive sequences 

rather than deleting these completely. 

 

In addition to the low expression efficiency, the FLAG-YIPF4-HA Del1-109 

truncation mutant appears to be smaller than its predicted molecular weight 

(Figure 3.12C). This could be caused by formation of a condensed and not 

entirely denatured conformation on the Western blot due to its high 

hydrophobicity.   
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The FLAG-YIPF4-HA G117 truncation mutant showed another expression 

anomaly by apparently expressing less FLAG epitope than HA epitope although 

the sequence of the expression construct was confirmed. A possible 

explanation is that the FLAG epitope is less accessible to the FLAG antibody 

due to post-translational modification in this specific truncation mutant. A post-

translational modification of the HA tag in FLAG-YIPF3-HA was reported to 

hamper the recognition with an HA antibody in HeLa cells (Tanimoto et al., 

2011). However, the FLAG epitope could be detected in the differential 

detergent permeabilisation assay (Figure 3.6) ruling out a post-translational 

modification of the epitope.  

 

Thus far, it was established that YIPF4 protein is widely expressed and is likely 

to play a role in HPV infected cells and tissue. Overexpression of YIPF4 causes 

artefacts like dimerisation and alteration of subcellular localisation. We 

proposed the first evidence-based 3 TMD topology of YIPF4 which might serve 

as a model for other YIP1 family members. Further investigations will address 

the confirmation and characterisation of the interaction of YIPF4 with E5 

(Chapter 4) and the search for a potential role of the E5/YIPF4 complex 

(Chapter 5).   
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Chapter 4. Characterisation of the interaction between YIPF4 

and E5 

4.1. Introduction 

HPV16 E5 protein is a small hydrophobic protein consisting of 83 amino acids, 

which arranges into 3 putative trans-membrane α-helices (Bubb et al., 1988, 

Wetherill et al., 2012a). The majority of 16E5 localises to the ER, the Golgi, the 

nuclear envelope and to a lesser extent the plasma membrane (Conrad et al., 

1993, Hu and Ceresa, 2009, Oetke et al., 2000, Schapiro et al., 2000). This 

information is, however, purely derived from overexpression systems due to a 

lack of antibody detection reagents. 

 

To date, no intrinsic enzymatic activity has been demonstrated for E5 so it is 

assumed that E5 exerts most its functions by interacting with proteins of the 

host cell. Recently purified 16E5 protein was identified as a viroporin consisting 

of a potential homo-hexamer (Wetherill et al., 2012a). The in vitro channel 

activity of E5 could be specifically blocked with a de novo designed small 

molecule inhibitor. This might be the first description of an intrinsic function of 

16E5 proteins. With the cellular role of the viroporin formation yet to be 

determined the recognition of new cellular targets of E5 will provide a better 

understanding of its roles during the HPV life-cycle, host cell transformation and 

immune evasion.  

 

The E5 proteins of the PVs share the presence of highly hydrophobic regions 

but their amino acid conservation is generally negligible (Bravo and Alonso, 

2004). This implicates the absence of a conserved binding motif, although the 

highly hydrophilic C-terminus of the E5α family, whilst not conserved in amino 

acid sequence, is regarded as a main interaction mediator to host cell proteins 

as well as 4 di-leucine motifs in the 1st TMD of 16E5 (Regan and Laimins, 2008, 

Cortese et al., 2010).  
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For HPV E5, there are no points of reference from conserved binding motifs and 

homologies to proteins of other viruses that could assisted in the identification of 

host binding partners which is in contrast to the HPV E6 and E7 oncoproteins 

(1.5.6, 1.5.7). Therefore, the E5 interaction partners and their binding regions 

were mostly determined with a common set of assays combining Co-IPs and 

occasional observation of cellular localisation. 

Co-IPs revealed that the HC of HLA-A2 binds to the 1st TMD of 16E5. Here, 2 of 

the 4 di-leucine motifs at positions 11/12 and 22/23 were found responsible for 

binding (Ashrafi et al., 2006b, Cortese et al., 2010). A direct co-localisation of 

the proteins in the host cell, however, was not shown.  

The HLA HC and 16E5 are part of a ternary protein complex also including the 

chaperone calnexin (Gruener et al., 2007). Co-IPs with a codon adapted, 

mutant 16E5 which features a disrupted 1st TMD revealed that calnexin binds to 

the 1st TMD of 16E5. Immuno-fluorescence analysis was intended to show a co-

localisation of GFP/AU1 tagged 16E5 and endogenous calnexin, but successful 

calnexin staining is debatable. The co-localisation with calnexin was, however, 

confirmed in keratinocytes with E5-AU1 expressed by retroviral transduction 

(Disbrow et al., 2003). 

The binding region of 16E5 to the 16 kDa subunit of the vacuolar H+ - ATPase 

(16K) is controversial. Co-IPs were performed with overexpressed untagged 

16E5 truncation mutants and epitope tagged 16K in COS-7 cells (Adam et al., 

2000). These identified amino acids 41 - 54 as the binding region with their 

hydrophobicity being crucial. The performance of similar Co-IPs, however, with 

in vitro translation of the proteins in microsomal membranes revealed amino 

acids 54 - 78 as the 16K binding region (Rodriguez et al., 2000). This 

discrepancy might be a result of the different experimental techniques used. 

The cellular co-localisation of the proteins was not shown in these studies. 

Another 16E5 binding partner with identified binding region is the ER-localised 

protein Bap31 (Regan and Laimins, 2008). Its binding region was mapped to 

the 10 most C-terminal amino acids of 16E5 by performing Co-IPs with 

overexpressed, epitope tagged 16E5 truncation mutants and endogenous 

Bap31. The co-localisation of AU1 tagged 16E5 and endogenous Bap31 was 

confirmed in the HPV31 positive cell line CIN612.  
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The same 10 amino acids of 16E5 were found to be responsible for binding to 

KNβ3 (Krawczyk et al., 2008a). This is in accordance with the prediction of the 

hydrophilic C-terminus to be a mediator for interactions with host cell proteins. 

Co-IPs using endogenous KNβ3 and overexpressed, AU1 tagged 16E5 

confirmed this. The overlapping localisation of AU1-16E5 and endogenous 

KNβ3 in COS-7 and primary human ectocervical cells was demonstrated by 

confocal microscopy.  

 

This short list of cellular binding partners with located binding regions illustrates 

the common set of assays used to confirm new cellular targets for HPV E5 

proteins. Due to lack of reliable antibodies to E5 and partly low expression 

efficiency, the analysis of overexpression systems is required. This implies 

performing Co-IPs with overexpressed and epitope tagged E5 and their 

respective mutants for determination of the binding region. Also, overlapping 

cellular localisations are determined referring to the overexpressed E5 protein. 

The advent of specific E5 antibodies would allow investigation of interactions 

with cellular proteins at physiological expression levels.  

 

Due to the lack of conserved binding motifs, a newly found cellular target of one 

E5 protein needs reinvestigation for E5 proteins of other PV types. And indeed, 

the MHC HC was bound by the most C-terminal amino acids 32 - 44 of BPV4 

E5 (Marchetti et al., 2005), which is in contrast to the N-terminal di-leucine 

binding site of 16E5. The binding to HLA HC was confirmed for the high-risk 

HPV83 E5 (Ashrafi et al., 2006a) but the binding region was not established. A 

functional association with HLA was also observed with the cutaneous HPV2a 

E5 (Cartin and Alonso, 2003), the low-risk HPV6b (Ashrafi et al., 2005) and 

BPV1 E5 (Ashrafi et al., 2002) but the direct binding to HC was not investigated.  

A clear difference in binding was seen with 16K where the glutamine residue at 

position 17 of BPV1 E5 was defined as mediator for 16K binding (Andresson et 

al., 1995). For 16E5, hydrophobic interactions were deemed responsible for 

binding to 16K (Adam et al., 2000). The binding to the low-risk HPV6 E5 was 

confirmed but the exact binding region could not be determined (Conrad et al., 

1993). A similar observation was made with the low-risk HPV11 E5a where an 
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interaction was established but the binding region could not be determined 

(Chen et al., 1996d).  

These findings illustrate that the poorly conserved E5 proteins can act on the 

same host cell targets but with completely independent mechanisms. Closer 

investigation of these differences might help to elucidate variations between 

high-risk, low-risk and cutaneous HPV types as well as their ungulate relatives.  

 

The E5 proteins, however, do not act alone on the host cell but in the context of 

the other HPV proteins. Especially the three oncoproteins E5, E6 and E7 seem 

to complement the function of each other. 

In this manner both 16E5 and 16E6 might modify vesicular trafficking of the host 

cell. HPV16 E6 was shown to target the cystic fibrosis trans-membrane 

regulator-associated ligand for degradation which could alter the exocytic and 

endocytic vesicular trafficking it is involved in (Jeong et al., 2007). Also, 16E5 

modulates trafficking by rearranging the actin cytoskeleton (Thomsen et al., 

2000) or impairing membrane fusion events (Suprynowicz et al., 2010). 

In an assay with primary baby rat kidney cells, the cell proliferation and colony 

formation was significantly enhanced when 16E5 and 16E7 were co-expressed 

compared to cells expressing 16E7 only (Bouvard et al., 1994a). This indicates 

that they might collaborate to promote cell proliferation in favour of the HPV life-

cycle in vivo. The same enhancement was observed for immortalisation of 

primary human keratinocytes by HPV when cells harbour an additional E5 gene 

in cis (Stöppler et al., 1996). The co-expression of 16E5 and 16E7 also 

promoted cell transformation as shown by the enhancement of anchorage-

independent growth (Valle and Banks, 1995). This was reinforced with 

transgenic mouse models which express single HPV16 oncoproteins or a 

combination of those (Maufort et al., 2010). The development of tumours in 

16E5/16E6 and 16E5/16E7 expressing mice, respectively, was greater than in 

mice expressing 16E6 and 16E7 individually. The complementary effects in cell 

transformation of the HPV oncoproteins was thus neatly proven from primary 

rodent cells to primary human cells to transgenic mouse models.  

 

A novel interaction of 16E5 and YIPF4 was detected in a semi-automated Y2H 

screen against a HeLa cell and a human testis epithelial cell library (1.7). This 
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interaction was then reiterated in a LUMIER assay performed in HEK293 cells. 

The presence of YIPF4 in cell lines susceptible and permissive to HPV as well 

as in organotypic raft cultures and CIN1/3 samples was established in the 

previous Chapter (Chapter 3).  

In this chapter, we sought to investigate the interaction of 16E5 with YIPF4 

further using the well-established methods of Co-IP and detection of cellular co-

localisation by confocal microscopy. Truncation mutants of both 16E5 and 

YIPF4 are used to locate the binding regions of the two proteins. Because of the 

occasional cooperation of 16E5 with 16E6 and 16E7, a possible interaction of 

YIPF4 with these oncoproteins is investigated. The conservation of this 

interaction is examined by screening E5 proteins of a representative panel of 

PV types for their binding to YIPF4.   
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4.2. Results 

4.2.1. YIPF4 immuno-precipitated with 16E5 

The binding of YIPF4 to 16E5 was examined by Co-IP to verify the interaction 

seen in the Y2H screen, LUMIER assay and TAP-MS (1.7). First, exogenous, 

epitope tagged proteins were used. GFP-16E5 and FLAG-YIPF4-HA as well as 

negative control proteins were expressed in HEK293T cells and the cell lysate 

subject to Co-IP using a GFP antibody (Figure 4.1A, schematic). The Western 

blots confirmed that FLAG-YIPF4-HA was bound specifically by GFP-16E5 

(Figure 4.1A, lane 1). The epitope tag control proteins FLAG-Optineurin and 

HA-Optineurin were not pulled down by GFP-16E5 (lane 2, 3) eliminating the 

possibility that GFP-16E5 bound to the FLAG and/or HA epitope tag of FLAG-

YIPF4-HA. It was ruled out that the GFP tag of GFP-16E5 mediates binding to 

FLAG-YIPF4-HA because free GFP did not interact with FLAG-YIPF4-HA (lane 

4). The GFP antibody targeted to bind GFP-16E5 did not non-specifically bind 

FLAG-YIPF4-HA (lane 5) nor did the uncoupled beads (lane 6). Thus, 16E5 and 

YIPF4 interacted specifically in this Co-IP approach with overexpressed bait 

and prey proteins. 

 

In order to verify this interaction with more physiological levels of protein, a Co-

IP was performed with endogenous YIPF4 as bait (Figure 4.1B, schematic). 

However, due to the unavailability of a 16E5 antibody, the overexpressed GFP-

16E5 fusion protein was used as prey. The Western blot confirmed that 

endogenous YIPF4 specifically bound to GFP-16E5 (Figure 4.1B, lane 1). 

Comparison with the overexpressed FLAG-YIPF4-HA and GFP-16E5 positive 

control (lane 2) showed a much weaker band for GFP-16E5 when bound to 

endogenous YIPF4 (lane 1). This might indicate that at physiological protein 

levels not all YIPF4 was bound by GFP-16E5. The negative control, GFP, was 

not pulled down by endogenous YIPF4 (lane 3), which underlines the specificity 

of the 16E5/YIPF4 interaction. Notably, endogenous YIPF4 non-specifically 

bound to the uncoupled beads (lane 4). This, however, does not affect the 

specificity of the 16E5/YIPF4 interaction seen. 
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Figure 4.1 Co-IPs confirming the interaction of YIPF4 with 16E5. A. FLAG-YIPF4-HA and 

GFP-16E5 as well as negative control proteins (GFP, FLAG-Optineurin, HA-Optineurin) were 

overexpressed in HEK293T cells. Co-IPs were performed with a GFP antibody on 

dynabeads (schematic) and equal amounts of total proteins. Lane 6 holds the uncoupled 

beads control. ‘ * ‘ = GFP antibody light chain; ‘ + ‘ = unspecific band B. GFP-16E5, GFP 

(negative control) and FLAG-YIPF4-HA (positive control) were overexpressed in HEK293T 

cells. Co-IPs were performed with the YIPF4 antibody on dynabeads to pull down 

endogenous YIPF4 (schematic). Equal amounts of total protein were used. ’ / ‘ = cell lysate 

without overexpressed proteins incubated with uncoupled beads. Marker in kDa (A + B). 
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It was noted that co-transfected constructs expressed less efficiently than single 

transfected constructs. This became obvious by comparing the relative amount 

of FLAG-YIPF4-HA when co-expressed with GFP-16E5 and GFP, respectively 

(Figure 4.1A, lane 1 and 4), to the amount when overexpressed alone (Figure 

4.1A, lane 5). Its expression was clearly less in co-expressing cells. Co-

transfection also affected the GFP-16E5 expression since its protein amount 

was dramatically decreased when co-expressed with FLAG-YIPF4-HA (Figure 

4.1B, lane 1 and 2). In addition, expression of GFP-16E5 but not GFP seemed 

to reduce the amount of endogenous YIPF4 (Figure 4.1B, lane 1 and 3). 

However, these varying amounts of protein did not inhibit binding of bait and 

prey in these Co-IP experiments.  

 

4.2.2. YIPF4 bound to the 2nd TMD of 16E5 

Thus far, the interaction of 16E5 and YIPF4 was clearly confirmed by Y2H 

screen, LUMIER assay (1.7) and Co-IP (Figure 4.1). The site of 16E5 

responsible for binding to YIPF4 was determined by Co-IP using 16E5 

truncation mutants.  

HPV16 E5 is proposed to have 3 TMDs (Figure 4.2A) which were used as a 

basis to generate 5 truncation mutants (Figure 4.2B) (Ashrafi et al., 2006b). The 

TMDs and their linker sequences were sequentially truncated from the C-

terminus. Only the Del1 mutant was designed to lack the most N-terminal TMD. 

All truncation mutants and the full-length 16E5 T83 protein were created with a 

GFP tag at the N-terminus. The theoretical molecular weights of these proteins 

were calculated with the ‘Protein Molecular Weight Calculator’-online tool.  

Co-IPs were performed with the full-length FLAG-YIPF4-HA as bait and the 

GFP fusion proteins of 16E5 truncation mutants as prey (Figure 4.2C, 

schematic). Clear binding to YIPF4 was observed for the full-length GFP-16E5 

T83 (lane 1) as well as R79 (lane 2) and A54 (lane 3) (Figure 4.2C). In contrast, 

the V36 (lane 4) and R30 (lane 5) truncation mutants showed strikingly reduced 

binding to YIPF4 while the Del1 truncation mutant (lane 6) was recognisably 

bound by YIPF4. This suggests that YIPF4 predominantly binds to amino acids 

37 - 54 of 16E5. These amino acids form the 2nd TMD of 16E5 including the 

linker to the 3rd TMD.   
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Figure 4.2 Mapping of 16E5 binding sites to FLAG-YIPF4-HA. A. Model of 16E5 as a 

monomer with 3 TMDs. Adapted from Wetherill et al., 2012a. B. Schematic representation of 

16E5 truncation mutants as GFP fusion proteins. The designated name for each truncation 

mutant is indicated on the left and consists of the one letter amino acid code and number of 

the final amino acid before truncation (counting the amino acids of 16E5 only). The Del1 

truncation mutant forms an exemption (Del1 = deletion of 1
st

 TMD). Boxes represent TMDs 

and black lines indicate luminal (subscript) and cytoplasmic (superscript) sites ‘ √ ‘ = mutant 

bound to YIPF4; ‘ / ’ = mutant bound very little to YIPF4. C. Co-IPs of GFP-16E5 truncation 

mutants with FLAG-YIPF4-HA. GFP-16E5 truncation mutants were co-expressed alongside 

FLAG-YIPF4-HA in HEK293T cells (including GFP as negative control). The Co-IPs were 

performed with equal amounts of total protein using dynabeads and FLAG antibody 

(schematic). Representative blot is shown. Marker in kDa. Red highlights (A, B, C) indicate 

binding site of YIPF4. 
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To investigate the cellular localisation of full-length GFP-16E5, the truncation 

mutants and FLAG-YIPF4-HA, the proteins were overexpressed in Huh7 cells. 

After fixation, the cells were stained with a FLAG antibody, imaged and the PCC 

values between the GFP fusion proteins and FLAG-YIPF4-HA were determined 

using the PSC plug-in for ImageJ (Figure 4.3).  

Both, the full-length GFP-16E5 T83 and FLAG-YIPF4-HA showed an ER-like 

cellular distribution and a reasonable co-localisation (PCC value = 0.66) (Figure 

4.3). However, in other cells of the same sample, FLAG-YIPF4-HA showed a 

Golgi-like cellular distribution which exhibited reduced co-localisation with the 

ER-like localised GFP-16E5 T83 (0.17).  

This Golgi-like localisation of YIPF4 was observed when co-expressed with the 

GFP-16E5 truncation mutants. The GFP-16E5 truncation mutants did not visibly 

alter their ER-like localisation with decreasing protein length. As expected from 

the deviating cellular distribution, the PCC values revealed that a co-localisation 

with FLAG-YIPF4-HA was virtually absent for the GFP-16E5 R79 (PCC value = 

0.10), A54 (0.24) and Del1 (0.22) truncation mutants. Only GFP-16E5 V36 

(0.50) and R30 (0.59) showed a reasonable co-localisation with FLAG-YIPF4-

HA. Thus, against expectations, the GFP-16E5 truncation mutants that bound to 

FLAG-YIPF4-HA (Figure 4.2C) did not co-localise with it but the non-binding 

GFP-16E5 V36 and R30 truncation mutants exhibited increased co-localisation 

with FLAG-YIPF4-HA. 

 

The PCC values of two independent experiments were analysed to statistically 

evaluate this finding (Figure 4.4). Indeed, the localisation of the full-length GFP-

16E5 T83 coincided to some extent with the mixed cell populations of ER- and 

Golgi-like localised FLAG-YIPF4-HA (PCC value = 0.43 ± 0.27). The GFP-16E5 

truncation mutants R79 (0.08 ± 0.13), A54 (0.18 ± 0.08) and Del1 (0.23 ± 0.15) 

did not co-localise markedly with FLAG-YIPF4-HA, although their binding was 

confirmed by Co-IP (Figure 4.2C). The GFP-16E5 V36 (0.50 ± 0.06) and R30 

(0.53 ± 0.09) truncation mutants showed increased co-localisation with FLAG-

YIPF4-HA although binding of these proteins was strikingly weak (Figure 4.2C).  
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Figure 4.3 Determination of the cellular localisations of GFP16-E5 truncation mutants and 

FLAG-YIPF4-HA. Huh7 cells overexpressing GFP fusions of 16E5 truncation mutants and 

FLAG-YIPF4-HA were stained with FLAG antibody. Cell nuclei were labelled with DAPI 

(blue). Images were acquired with Zeiss LSM700 confocal microscope and analysed for co-

localisation of GFP-16E5 and FLAG-YIPF4-HA with the PSC tool. The scatterplots illustrate 

the PCC values. Representative images are shown. Scale bars = 20 µm 
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The co-localisation experiment was performed with overexpressed FLAG-

YIPF4-HA and GFP-16E5 truncation mutants in the Huh7 liver carcinoma cell 

line (Figure 4.3). It was observed that overexpression of YIPF4 leads to an 

alteration of its cellular distribution (3.3.2). It was investigated whether a co-

localisation of the interacting proteins can be observed in a more physiologically 

relevant expression system. For this, the HPV16 positive cell line SiHa was 

used to examine the co-localisation of endogenous YIPF4 with the full-length 

GFP-16E5 and its truncation mutants.  

 

The full-length GFP-16E5 and the truncation mutants were exogenously 

expressed in SiHa cells. The cells were fixed, stained for endogenous YIPF4 

and imaged. All GFP-16E5 constructs showed an ER-like distribution while 

endogenous YIPF4 clearly exhibited its previously observed Golgi staining 

pattern (Figure 4.5 and Figure 3.4B).  

Figure 4.4 PCC values of GFP-16E5 truncation mutants and FLAG-YIPF4-HA. Each bar 

represents the mean PCC value (± SDM) of several cells (n ≥ 10 cells/sample) of two 

independent experiments (except one experiment only for GFP-16E5 Del1). A one-way 

ANOVA was performed. *p ≤ 0.05, **p ≤ 0.01 
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As to expect from the cellular distribution, the localisation of GFP-16E5 did not 

markedly overlap with the endogenous YIPF4 protein (PCC value = 0.09). Also, 

the GFP-16E5 truncation mutants that were shown to bind to FLAG-YIPF4-HA 

(Figure 4.2C), did not co-localise with the endogenous protein (R79 = 0.10; A54 

= 0.05; Del1 = -0.05). Only the GFP-16E5 V36 and R30 truncation mutants 

showed a marked increase in the level of co-localisation with endogenous 

YIPF4 (V36 = 0.63; R30 = 0.68) despite the finding that their binding was 

recognisably reduced (Figure 4.2C). 

Repetition of this experiment confirmed the conflicting absence of co-

localisation of endogenous YIPF4 with its binding partners GFP-16E5 truncation 

mutants R79 (PCC value = 0.02 ± 012), A54 (0.14 ± 0.18) and Del1 (-0.01 ± 

0.1) and the full-length T83 (-0.04 ± 0.17)(Figure 4.6). A significant increase in 

co-localisation of endogenous YIPF4 with the non-binding truncation mutants 

V36 (0.54 ± 0.11) and R30 (0.56 ± 0.08) was observed (p ≤ 0.01). 

Thus, the paradox findings from the overexpression system in Huh7 cells 

(Figure 4.3 and Figure 4.4) agree with the observations made in the more 

physiological relevant expression system (Figure 4.5 and Figure 4.6). According 

to these, YIPF4 did not localise to the same cellular compartment as its GFP-

16E5 interaction partners but shares localisation with the non-binding GFP-

16E5 truncation mutants V36 and R30.  
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Figure 4.5 Cellular localisation of 16E5 mutants and endogenous YIPF4. SiHa cells 

overexpressing GFP tagged 16E5 truncations mutants were stained with the YIPF4 

antibody. Cell nuclei were labelled with DAPI (blue). Images were acquired with Zeiss 

LSM700 confocal microscope and analysed for co-localisation of GFP-16E5 and YIPF4 

using the PSC tool. The scatterplots illustrate the PCC values. Representative images are 

shown. Scale bars = 20 µm 
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4.2.3. The amino acids 118 - 138 and the cellular localisation of 

YIPF4 were crucial for 16E5 binding 

There is no information on binding domains of YIPF4 to other proteins. 

Therefore, the binding region to 16E5 was investigated with YIPF4 truncation 

mutants in a Co-IP approach. The FLAG-YIPF4-HA truncation mutants (Figure 

4.7B) were used as bait and are shown based on the novel 3 TMD model of 

YIPF4 (Figure 4.7A) previously established (3.2.6). GFP-16E5 served as prey. 

Proteins were overexpressed in HEK293T cells.  

The expression levels of the FLAG-YIPF4-HA truncation mutants varied as 

seen before (Figure 3.12). The K223, S138, Q166 and G117 truncation mutants 

(Figure 4.7C, lane 2, 3, 4, 6) showed reasonable expression but S138 and the 

full-length V244 expressed very little (Figure 4.7C, lane 1, 5). No expression 

was detectable for the Del1-109 mutant and therefore its binding to GFP-16E5 

could not be examined. 

Figure 4.6 PCC values of GFP-16E5 truncation mutants and endogenous YIPF4. Each bar 

represents the mean PCC value (± SDM) of several cells (n ≥ 8 cells/sample) of two 

independent experiments. A one-way ANOVA was performed **p ≤ 0.01 
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The Co-IPs revealed that FLAG-YIPF4-HA V244, K223, S195 and Q166 were 

clearly bound by GFP-16E5 (Figure 4.7C, lanes 1, 2, 3, 4). A faint band 

corresponding to GFP-16E5 could be observed in the Co-IP with the S138 

truncation mutant (Figure 4.7C, lane 5). Given the weak expression of this bait 

protein, the detection of a little amount of prey was rated as protein binding. The 

G117 truncation mutant was no longer bound by GFP-16E5 (Figure 4.7C, lane 

6). Negative controls confirmed that the GFP tag of 16E5 did not bind to FLAG-

YIPF4-HA (Figure 4.7C, lane 8) nor did GFP-16E5 non-specifically bind to the 

antibody coupled beads (Figure 4.7C, lane 9). Therefore, this Co-IP approach 

mapped the binding region of 16E5 to amino acids 118 - 138 of YIPF4.  

 

The cellular localisation of the YIPF4 truncation mutants in relation to 16E5 was 

determined in SiHa cells. The YIPF4 truncation mutants were expressed as 

GFP fusion proteins alongside Cherry-FLAG tagged 16E5.  

Notably, expressed as a GFP fusion protein, most YIPF4 truncation mutants 

showed an ER-like cellular distribution (Figure 4.8). Only the G117 truncation 

mutant was distributed throughout the cell including the nucleus. Also, the 

Cherry-FLAG-16E5 protein exhibited an ER-like distribution pattern.  

The co-localisation was determined with the PSC plug-in for ImageJ. In 

accordance with the ER-like cellular localisation, the full-length GFP-YIPF4 

V244 depicted co-localisation with Cherry-FLAG-16E5 (PCC value = 0.85). The 

YIPF4 truncation mutants that bound to 16E5 in the Co-IP assay were clearly 

co-localising (K223 = 0.84; S195 = 0.80; Q166 = 0.84; S138 = 0.65). The G117 

truncation mutants that did not bind 16E5 displayed reduced co-localisation 

(G117 = 0.43) as its cellular localisation was not limited to the ER but distributed 

throughout the cell. Expression as a GFP fusion protein allowed the detection of 

the Del1-109 truncation mutants that could not be investigated for 16E5 binding 

in the Co-IP assay (Figure 4.7C). It clearly co-localised with Cherry-FLAG-16E5 

(Del1-109 = 0.89) (Figure 4.8).  

 

The statistical analysis of several cells revealed that the YIPF4 truncation 

mutants that are bound by 16E5 indeed co-localised (PCC value for V244 = 

0.77 ± 0.12; K223 = 0.82 ± 0.10; S195 = 0.83 ± 0.06; Q166 = 0.82 ± 0.05; S138 

= 0.70 ± 0.10) (Figure 4.9). Also, the GFP-YIPF4 Del1-109 truncation mutant 
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which could not be analysed in the Co-IP assay co-localised with Cherry-FLAG-

16E5 (Del1-109 = 0.82 ± 0.12). This might indicate that 16E5 is able to bind to 

this truncation mutant. It would agree with the fact that Del1-109 contains the 

identified binding region of amino acids 118 - 138. The co-localisation of the 

G117 truncation mutant with 16E5 was significantly reduced (0.38 ± 0.13; p ≤ 

0.01). The conjoined reduced co-localisation and loss of binding raises the 

possibility that the co-localisation plays an important role for the interaction of 

16E5 to YIPF4.  

 

Overall the findings so far confirm that YIPF4 is indeed a new cellular target of 

16E5. It binds YIPF4 at amino acids 118 - 138 when they are co-localised 

(Figure 4.9). YIPF4 binds to the 2nd TMD of 16E5 but significant co-localisation 

was not detected in this experiment (4.2.2).  
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Figure 4.7 Mapping of YIPF4 binding sites to 16E5. A. YIPF4 topology model according to 

the differential, detergent permeabilisation assay (3.2.6.3.3). B. Schematic representation of 

FLAG-YIPF4-HA truncation mutants based on the 3 TMD model of YIPF4. ‘ √ ‘ = truncation 

mutant bound to YIPF4; ‘ / ’ = truncation mutant did not bind to YIPF4; ‘ ? ‘ = truncation 

mutant was not investigated. C. Co-IP of FLAG-YIPF4-HA truncation mutants with GFP-

16E5. Epitope tagged 16E5 and YIPF4 truncation mutants were overexpressed in HEK293T 

cells. The Co-IPs were performed with equal amounts of total protein with FLAG antibody on 

dynabeads (schematic). A representative blot is shown. Marker in kDa. * = antibody light 

chain. Red highlights (A, B, C) indicate binding region. 
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Figure 4.8 Cellular localisation of GFP-YIPF4 truncation mutants and Cherry-FLAG-16E5. 

SiHa cells overexpressing GFP fusion proteins of YIPF4 truncation mutants and Cherry-

FLAG-16E5 were fixed and imaged using a Zeiss LSM700 confocal microscope. Images 

were analysed for co-localisation of GFP-YIPF4 truncation mutants and Cherry-FLAG-16E5 

using the PSC tool. The scatterplots illustrate the PCC values. Representative images are 

shown. Cell nuclei were labelled with DAPI (blue). Scale bars = 20 µm 
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Figure 4.9 Preliminary model of 16E5 and YIPF4 interaction. The model shows the potential 

interaction of 16E5 with YIPF4 according to the binding sites mapped by Co-IP with their 

respective truncation mutants. HPV16 E5 binds with its 2
nd

 TMD to amino acids 118 - 138 of 

YIPF4. This binding region is indicated by a red box. 

Figure 4.10 PCC values of GFP-YIPF4 truncation mutants and Cherry-FLAG-16E5. Each bar 

represents the mean PCC value (± SDM) of several cells (n ≥ 5). A one-way ANOVA was 

performed ** p ≤ 0.01 



172 

 

4.2.4. YIPF4 did not interact with 16E6 and 16E7 and did not co-

localise with all three HPV16 oncoproteins  

The three HPV oncoproteins E5, E6 and E7 complement each other in their 

manipulation of cellular processes (4.1). It is therefore possible that not only 

16E5 interacts with YIPF4 but also the other two oncoproteins of HPV16, E6 

and E7. 

 

The interaction of the HPV16 oncoproteins with YIPF4 was investigated by Co-

IP using overexpressed FLAG-YIPF4-HA as bait and GFP fusion proteins of 

16E5 (positive control), 16E6 and 16E7 as prey (Figure 4.11, schematic). The 

Western blot clearly confirmed the interaction of GFP-16E5 with FLAG-YIPF4-

HA (Figure 4.11, lane 1). Interestingly, the GFP fusion proteins of 16E6 (lane 2) 

and 16E7 (lane 3) were not bound by FLAG-YIPF4-HA. The negative control, 

GFP (lane 4), also did not show any binding as expected. 16E5 was therefore 

the only HPV16 oncoprotein that bound YIPF4. 

 

To examine the cellular localisation, the GFP fusion proteins of 16E5, 16E6 and 

16E7 were expressed in SiHa cells which were fixed and stained for 

endogenous YIPF4 and the trans-Golgi network marker TGN46 (Figure 4.12A). 

Imaging of the samples confirmed the previously observed ER-like staining 

pattern of GFP-16E5. GFP-16E6 localised throughout the cell and GFP-16E7 

was mainly localised in the nucleus but some cytoplasmic staining was 

detectable. The endogenous YIPF4 protein co-localised with the trans-Golgi 

network marker TGN46 in all samples.  

The PCC values between the GFP-fusion proteins and endogenous YIPF4 were 

determined with the PSC plug-in for ImageJ. The PCC value indicated that 

GFP-16E5 and endogenous YIPF4 did not co-localise in SiHa cells (PCC value 

= 0.00) although an interaction was convincingly established. This was in 

accordance with the fact that GFP-16E5 appeared to be localised at the ER and 

YIPF4 clearly localised at the trans-Golgi network. The same observation was 

true for 16E6 (0.17) and 16E7 (0.17) where no notable co-localisation with 

YIPF4 was observed.  
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The analysis was conducted with several cells (Figure 4.12B). The paradox 

absence of co-localisation of GFP-16E5 with YIPF4 was confirmed (PCC value 

= -0.04 ± 0.2 ). There was no significant difference to the PCC values of GFP-

16E6 (0.16 ± 0.1) and GFP-16E7 (0.09 ± 0.1) implying that these also did not 

markedly co-localise with endogenous YIPF4. 

 

Thus, the interaction of YIPF4 was clearly confined to the 16E5 oncoprotein 

although their co-localisation could not be observed. The 16E6 and 16E7 

oncoproteins neither bound nor co-localised with YIPF4.  
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Figure 4.11 Co-IPs with FLAG-YIPF4-HA and the HPV16 oncoproteins E5, E6 and E7. GFP 

(negative control) and GFP fusion proteins of 16E5, 16E6 and 16E7 were co-expressed with 

FLAG-YIPF4-HA in HEK293T cells. The cells were lysed and equal amounts of total protein 

used for Co-IP with a FLAG antibody on dynabeads (schematic). The eluates were analysed 

on a Western blot by probing for the epitope tags of the exogenously expressed bait and 

prey proteins. Marker in kDa. 
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Figure 4.12 Identification of cellular localisation of endogenous YIPF4 and the HPV16 

oncoproteins E5, E6 and E7. A. SiHa cells were transfected with GFP fusion-proteins of 

16E5, 16E6 and 16E7. Cells were fixed and stained with the YIPF4 antibody and the trans-

Golgi marker protein TGN46. Cells were imaged on Zeiss LSM700 confocal microscope. Cell 

nuclei were labelled with DAPI (blue). Representative images are shown. Scale bars = 20 

µm B. The PCC values of the GFP fusion proteins and endogenous YIPF4 were determined 

using the PSC plug-in for ImageJ. Each bar represents the mean (± SDM) of several cells (n 

≥ 8 cells/sample) of two independent experiments (except for one experiment for 16E7). A 

one-way ANOVA was performed and no significant differences could be detected. 
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4.2.5. YIPF4 bound to E5 proteins from various HPV and BPV types 

The E5 proteins of HPV and BPV types are not conserved regarding amino acid 

identity. Nevertheless, they share some binding partners within the host cell. It 

is therefore possible that E5 proteins from PV types other than HPV16 also 

interact with YIPF4.  

Co-IPs were performed with representative E5 proteins from the clinically most 

relevant α-PVs (cutaneous HPV2a, low-risk HPV 6b, 11, high-risk HPV16, 18, 

31) and the ungulate BPV1 of the δ-PVs. Overexpressed FLAG-YIPF4-HA was 

used as bait and GFP fusion E5 proteins as prey (Figure 4.13A). All GFP-E5 

fusion proteins were expressed successfully alongside FLAG-YIPF4-HA in 

HEK293T cells showing slight differences in their expression efficiency.  

The E5 protein from the cutaneous HPV2a was clearly bound by YIPF4 (Figure 

4.13A, lane1). Also, the E5 proteins from low-risk HPV6b and 11 were pulled 

down by YIPF4 (lane 2, 3). In addition to the established interaction with 16E5 

(lane 4), YIPF4 formed complexes with further high-risk E5 proteins from HPV 

18 and 31 (lane 5, 6). Interestingly, the ungulate BPV1 E5 protein was also 

bound by YIPF4. This indicates that the interaction with YIPF4 is widely 

conserved amongst PV E5 proteins. 

 

The high-risk and low-risk HPV oncoproteins E6 and E7 have some conserved 

binding regions which mediate the interaction to the same proteins but with 

different affinity. The affinities of the various E5 proteins to YIPF4 were 

estimated by densitometry from the Co-IP Western blot (Figure 4.13A). The 

ratios of the respective band intensities of E5 to YIPF4 from the IP Western 

blots were divided by the same ratio of the lysate blots (Figure 4.13B). This 

provided an estimate of the amount of E5 protein bound by the YIPF4 bait 

which served as surrogate for the binding affinity.  

The analysis of three repetitions of Co-IPs revealed some differences between 

the mean relative binding affinities to YIPF4 (2aE5 = 0.68 ± 0.28; 6bE5a = 1.10 

± 1.13; 11E5a = 1.40 ± 0.45; 16E5 = 1.37 ± 0.40; 18E5 = 1.02 ± 0.31; 31E5 = 

1.37 ± 2.10; BPV1E5 = 0.89 ± 1.21). However, the differences were not 

significant and it is therefore to assume that the approximated binding affinity of 

the tested E5 proteins to YIPF4 does not vary markedly. 
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Figure 4.13 Interaction of YIPF4 with E5 proteins from a representative panel of PV types.  

A. Co-IPs of FLAG-YIPF4-HA and GFP-E5 fusion proteins of HPV types (cutaneous = 2a, 

low-risk = 6b, 11, high-risk = 16, 18, 31) and BPV1. GFP-E5 fusion proteins (and negative 

control GFP) were overexpressed alongside FLAG-YIPF4-HA in HEK293T cells. The Co-IPs 

were performed with equal amounts of total protein and a FLAG antibody on dynabeads 

(schematic). Representative Western blot is shown. Marker in kDa. ‘ * ‘ = antibody light 

chain. B. Densitometry analysis of three sets of Co-IPs. The mean relative binding affinities 

(±SDM) of E5 and YIPF4 are shown and were determined as follows: (IP blot(E5 band 

intensity/YIPF4 band intensity)) / (lysate blot(E5 band intensity/YIPF4 band intensity)). A 

one-way ANOVA was performed and no significant differences were detected. 
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The cellular localisation of GFP-E5 fusion proteins in relation to endogenous 

YIPF4 was investigated in SiHa cells (Figure 4.14A). As expected, endogenous 

YIPF4 localised at the trans-Golgi network since it visibly co-localised with the 

trans-Golgi network marker TGN46. The GFP-E5 fusion proteins exhibited an 

ER-like distribution pattern within the cells. The PCC values of GFP-E5 proteins 

and endogenous YIPF4 were determined using the PSC plug-in for ImageJ.  

 

In accordance with the co-localisation pattern observed before (Figure 4.5 and 

Figure 4.11), there is no marked co-localisation detectable between YIPF4 and 

any of the GFP-E5 proteins investigated (PCC value of 2E5 = 0.40; 6bE5a = -

0.02; 11E5a = 0.29; 16E5 = -0-32; 18E5 = 0.11; 31E5 = -0.12; BPV1E5 = 0.21). 

 

The analysis of several cells per sample revealed differences in the mean PCC 

values (Figure 4.15). The HPV2 E5 protein showed some co-localisation with 

endogenous YIPF4 (PCC value = 0.46 ± 0.27) while 16E5 did not co-localise 

with YIPF4 (-0.03 ± 0.20). In this small sample set, however, these differences 

were not significant. All GFP-E5 proteins therefore showed little or no co-

localisation with endogenous YIPF4 in this experiment.  
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Figure 4.14 Cellular localisation of endogenous YIPF4 and GFP-E5 fusion proteins of a 

representative panel of PV types. GFP-E5 fusion proteins of HPV types (2a, 6b, 11, 16, 18, 

31) and BPV1 were expressed in SiHa cells. Cells were fixed and stained with antibodies 

against YIPF4 and the trans-Golgi network marker protein TGN46. Cell nuclei were labelled 

with DAPI (blue). Images were acquired with Zeiss LSM700 confocal microscope. The PCC 

values of GFP-E5 fusion proteins and YIPF4 were determined with the PSC plug-in for 

ImageJ. The scatterplots illustrate the PCC values. Representative images are shown. Scale 

bars = 20 µm 
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Figure 4.15 PCC values of E5 oncoproteins of a representative panel of PV types and 

endogenous YIPF4. Each bar represents the mean PCC value (± SDM) of several 

cells/sample (n ≥ 5). A one-way ANOVA was performed and no significant differences were 

detected. 
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4.3. Discussion 

4.3.1. YIPF4 is confirmed as a novel 16E5 interaction partner 

The Co-IPs undertaken in this study firmly established YIPF4 as a novel 

interaction partner for 16E5. The use of a number of appropriate negative 

controls insured that the interaction was not mediated by epitope tags or non-

specific binding by antibodies or beads but by true interaction of the two 

proteins (Figure 4.1A). We could therefore validate the results from the Y2H 

screen, LUMIER assay and TAP-MS analysis that preliminarily identified YIPF4 

as a novel 16E5 binding partner (1.7).  

 

The Co-IP approach indeed verified the 16E5/YIPF4 interaction but it could not 

reveal whether 16E5 directly binds YIPF4 or whether the interaction is mediated 

by another unknown protein. The support for a direct interaction comes from the 

Y2H screen. By nature it requires a direct interaction of bait and prey so that the 

fused DBD and the activation domain of GAL4, respectively, are united to 

promote transcription of the reporter gene. It is therefore likely that the binding 

of 16E5 and YIPF4 is of direct nature. A fluorescence resonance energy 

transfer (FRET) assay in mammalian cells could be conducted to support this 

finding. 

Interestingly, many of the cellular targets of 16E5 have been determined by Co-

IP (4.1), so an interrogation of the direct nature of their binding might be 

appropriate in some cases.  

 

It is possible that 16E5 and YIPF4 are part of a bigger protein complex. This 

could include YIPF3, the only known binding partner of YIPF4 to date (Tanimoto 

et al., 2011). Indeed, TAP-MS analysis suggests that 16E5, 18E5 and 6bE5 

interact with YIPF3 (Rozenblatt-Rosen et al., 2012). A further YIP1 family 

member, YIF1B, interacted with 18E5 and 6bE5 in the same TAP-MS analysis 

but more research is needed to investigate the expression of YIPF3 and YIF1B 

in keratinocytes and to determine whether these interactions are part of or 

independent of the E5/YIPF4 complex. It is also conceivable that other known 

16E5 interacting proteins form part of the potential bigger protein complex. 
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Thus, further experiments need to be carried out to determine the exact 

stoichiometry and composition of the E5/YIPF4 protein complex.  

 

It was noted that 16E5 bound less efficiently to endogenous YIPF4 than to 

overexpressed YIPF4 (Figure 4.1B). This phenomenon was observed by others 

with the 16K subunit of the vacuolar H+ - ATPase. A Co-IP with overexpressed 

and epitope tagged 16K and 16E5 in COS-7 cells showed that the majority 

(62%) of total 16K bound to 16E5 (Suprynowicz et al., 2010). A similar Co-IP 

but with endogenous 16K and stably expressing 16E5 in HFK cells revealed 

that only a minor portion of the endogenous 16K (5%) interacted with 16E5. 

Consequently, 16E5 bound dramatically less endogenous 16K than would have 

been predicted by the overexpression system. It is likely that the overall amount 

of (overexpressed) protein in this assay plays a crucial role and might explain 

the decreased binding of 16E5 to endogenous YIPF4. Also, a shared binding 

region with other 16E5 interaction partners might be the cause of this (see 

4.3.2).  

 

Ideally, the Co-IP would be repeated with endogenous 16E5 to circumvent the 

artificially high proteins levels. The most appropriate cell line for this experiment 

would be CaSki. These cells are known to express YIPF4 (Figure 3.1) and were 

shown to express 16E5 by protein mass spectrometry (Sahab et al., 2012). 

Unfortunately, despite several attempts over more than two decades (Adam et 

al., 2000, Chang et al., 2001, Chen and Mounts, 1989, Hwang et al., 1995, Kell 

et al., 1994, Sahab et al., 2012), there is no specific antibody available to 16E5 

that would allow this experiment to date. The advent of purification systems for 

near native 16E5 (Wetherill et al., 2012a, Yang et al., 2003a) should however 

facilitate the development of such an antibody and therefore permit Co-IPs with 

endogenous 16E5.  

 

This study has also shown that the simultaneous overexpression of two proteins 

dramatically reduced the total amount of each individual protein (Figure 4.1). 

This was confirmed with various different constructs to a greater or lesser 

degree (Figure A. 4). The co-expression of Cherry-FLAG-16E5 and GFP-YIPF4 

formed an exception (Figure 4.8). The decrease in protein levels of co-
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expressing proteins might be explainable by the competition for cellular 

transcriptional and translational resources. To exclude a potential impact on the 

Co-IP results, the expression efficiency of individual proteins can be adjusted by 

co-transfecting empty vectors.  

 

A fast turnover of the 16E5/YIPF4 complex could also be the reason for the 

decrease of both protein levels when co-expressed. This would also justify the 

decrease in endogenous YIPF4 in GFP-16E5 expressing cells (Figure 4.1B). 

The rapid turnover of this protein complex could depict its function in HPV 

infected host cells. A possible mechanism is the reciprocal interference with 

stabilising binding partners. Indeed, the YIP1 family member YIPF5 is known to 

stabilise another member of this family, YIF1A (Yoshida et al., 2008). The only 

known binding partner of YIPF4, YIPF3, however, was shown not to be required 

for YIPF4 protein stability (Tanimoto et al., 2011) but other yet unknown 

interacting proteins could play this role. A comparison of the 16E5 and YIPF4 

half-lives individually and as a protein complex should be conducted to 

investigate this possibility (see 5.3.2). 

In contrast to this, this decrease of endogenous YIPF4 was not observed in 

HFK cells stably transfected with the HPV18 WT genome (Figure 3.3). The 

comparison with the HFK HPV18 E5 KO cell lines showed no alteration of the 

YIPF4 protein level. In this experimental system, 18E5 is expressed at 

physiological levels without an epitope tag and in context of the remaining HPV 

proteins. It is therefore to be regarded as the more authentic model for the 

E5/YIPF4 protein complex and would thus argue for no acceleration of 

E5/YIPF4 turnover. However, 18E5 may have a different effect on YIPF4 than 

16E5.  

Whether the decrease of protein levels observed here is an experimental 

artefact of protein overexpression or whether it is a clue towards E5/YIPF4 

protein complex functionality remains to be elucidated.  
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4.3.2. 16E5 binds with its 2nd TMD to amino acids 118 - 138 of YIPF4 

requiring correct cellular localisation 

The 2nd TMD including the linker sequence to the 3rd TMD of 16E5 was 

identified as the binding site of YIPF4 in Co-IP experiments with 16E5 

truncation mutants (Figure 4.2). The interaction with the mutants V36 and R30, 

which lack this region, was not completely abrogated. This suggests that there 

might be other sites of 16E5 that mediate weak binding to YIPF4. A similar 

observation was made with Bap31, which was shown to bind to the 10 most C-

terminal amino acids of 16E5 (Regan and Laimins, 2008). A Co-IP with a 

deletion mutant deficient of those 10 amino acids still bound Bap31 at low 

levels. The potential additional binding sites were not investigated further. Other 

examples are the YIPF4 homologues in yeast, Yip1p and Yif1p. They interact 

with the Ypt35 GTPase via the N-termini but truncation mutants consisting of 

the C-termini only still show weak interaction with Ypt35 GTPase in a binding 

assay (Vollert and Uetz, 2004). Generation of extra point or deletion mutants of 

16E5 could help to define the exact amino acids responsible for binding to 

YIPF4 in this case. 

 
The 2nd TMD of 16E5 is also the putative binding site to 16K according to Adam 

and colleagues (Adam et al., 2000). It is therefore conceivable that 16K and 

YIPF4 compete for it. A potential support for this hypothesis is the observation 

that only a minority of endogenous 16K interacts with 16E5 in HFK cells 

(Suprynowicz et al., 2010). The expression of YIPF4 was confirmed in this cell 

type (Figure 3.3) so it is possible that YIPF4 displaces 16K from the 16E5 

binding site and vice versa. And indeed, as mentioned before (4.3.1) 

endogenous YIPF4 shows reduced binding to 16E5 in HEK293T cells (Figure 

4.1B) meaning a competition for the 16E5 binding site is theoretically possible. 

The hypothesis could be tested by re-performing the Co-IPs from cells depleted 

of YIPF4 and 16K by RNA interference, respectively. The binding capacity of 

16E5 to the one protein should increase when the other is knocked down if this 

hypothesis holds true. 
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In addition to mediating binding to host cell proteins, the 2nd TMD is proposed to 

play a significant role for self-interaction and thus formation of the homo-

hexameric viroporin (Wetherill, 2012, Wetherill et al., 2012a, Yang et al., 

2003a). In silico modelling predicts the threonine at position 40 to form a 

hydrogen bond with the threonine at position 38 of the adjacent 16E5 monomer. 

The binding of YIPF4 could therefore disrupt the viroporin confirmation. HPV16 

E5 might thus exist in several oligomerisation states within the host cell. The E5 

protein of BPV1 is known to function in two oligomeric states within the cell. It 

interacts with the PDGF-β receptor as a dimer (Nilson et al., 1995), whereas it 

binds 16K as a monomer (Gieswein et al., 2003). The binding of YIPF4 and 

other interaction partner could therefore determine the oligomeric state of 16E5 

within the cell, which might all exert distinct functions. 

 

The Co-IP experiments with YIPF4 truncation mutants mapped the 16E5 

binding regions to amino acids 118 - 138 (Figure 4.7C). But the reverse 

speculations about the competition of 16E5 with other proteins for binding to 

this region are not possible. The only firmly established binding partner of 

YIPF4 is YIPF3 (Tanimoto et al., 2011) but their binding regions were not 

investigated. A suggestion can be derived from other YIP1 family members, 

YIPF1 and YIPF6. In Y2H experiments it was observed that all their TMD 

mediated the binding (Shakoori et al., 2003). The N-terminal cytoplasmic region 

was not necessary. The C-terminus of the yeast homologue Yip1p was also 

shown to be important for function, especially its final 18 amino acids (Chen et 

al., 2004). If interaction via the C-terminal half is conserved between YIP1 

family members, 16E5 binding could abrogate the interaction with YIPF3. 

Further experiments are needed to determine the cellular binding partners of 

YIPF4 (5.2.3) and the consequence of 16E5 binding for their interaction. 

 

A clue about the actual mode of interaction of 16E5 to this site of YIPF4 came 

from the analysis of co-localisation. It revealed that the non-binding YIPF4 

truncation mutant G117 no longer co-localises with 16E5 (Figure 4.9). The 

G117 mutant only contains the highly hydrophilic N-terminus of YIPF4 and it 

clearly shows a more dispersed cellular distribution (Figure 4.8) although 

exceptions have been observed (Figure A. 1). It is conceivable that this mainly 
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soluble truncation mutant is inaccessible for binding to the 2nd TMD of 16E5. 

The binding of the remaining YIPF4 truncation mutants might be facilitated by 

their closer membrane association which mediates the access to the 2nd TMD of 

16E5. 

This can be supported by the properties of the S138 truncation mutant. It was 

shown to be partially soluble but a fraction of the protein remained associated 

with the membrane (Figure 3.21 and Figure A. 1). In the binding assay with 

16E5, only a small fraction was bound to GFP-16E5 (Figure 4.7). It is intriguing 

to speculate that only the membrane-associated fraction of S138 interacts with 

16E5. This could theoretically be investigated by performing the Co-IP with 

GFP-16E5 again, however, with the soluble and membranous fraction of S138 

expressing cells. It could show that GFP-16E5 only binds to S138 from the 

membranous fraction. Overall, the membrane association and hence the 

cellular localisation seem to contribute to the binding of YIPF4 by 16E5. 

 

The requirement of co-localisation was also observed for binding to the HLA 

class I HC (Cortese et al., 2010). The di-leucine motifs at position 11/12 and 

22/23 of 16E5 were found to mediate direct binding to the HC, but the remaining 

two di-leucine motifs at positions 16/17 and 27/28 were necessary for the 

correct localisation of the protein. Only the presence of all four di-leucine motifs 

allowed the exertion of the function of the 16E5/HLA HC complex. 

It remains to be elucidated which amino acids are required for the appropriate 

function of the 16E5/YIPF4 complex and a more extensive investigation with 

further point and deletion mutants could help to determine these.  

 

In theory, the 16E5/YIPF4 interaction could be mediated by a disulphide bond 

since both proteins carry cysteine residues. However, the cysteine residues of 

16E5 are not located in the 2nd TMD but in the 1st (C18, C20, C24, C26) and 3rd 

(C59). The cysteine residue of YIPF4 is localised at position 94. This would 

mean that the G117 truncation mutant should still be able to form the disulphide 

bond. But as established (Figure 4.7), this mutant no longer binds to 16E5. 

Also, the binding buffer used for the Co-IPs contained the reducing agent DTT, 

which abrogates any disulphide bonds within the cell lysate. The formation of 

disulphide bonds between 16E5 and YIPF4 is therefore unlikely.   
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Notably, 16E5 and YIPF4 are oriented in an anti-parallel fashion within the 

membranes. The C-terminus of 16E5 and the N-terminus of YIPF4 face the 

cytoplasm. This anti-parallel orientation is also taken by BPV1 E5 and the 

PDGF-β receptor. It allows the aspartic acid at position 33 of 16E5 and the 

lysine at position 499 of PDGFR to get into close proximity and form a salt 

bridge that stabilises the complex (DiMaio and Petti, 2013, Meyer et al., 1994, 

Surti et al., 1998). Whether the orientation of 16E5 and YIPF4 favours the 

formation of a complex remains to be elucidated. In silico modelling as 

conducted for the 16E5 homo-hexamer (Wetherill, 2012) could help identify 

important residues for the formation of the 16E5/YIPF4 complex. These could 

be taken as point of reference for further mutational analysis of this complex.  
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4.3.3. The absence of co-localisation of E5 and YIPF4 might be an 

artefact of the overexpression system 

In this study the binding of E5 to YIPF4 was firmly established by Co-IP. 

Surprisingly, examination of the PCC values showed that these interacting 

proteins did not co-localise within the cell (Figure 4.6, Figure 4.11, Figure 4.15). 

The determination of the PCC value was recently successfully applied to 

establish a co-localisation of YIF1A with the cis-Golgi protein GM130 and 

ERGIC53 (Kuijpers et al., 2013). In contrast to expectation, the localisation 

overlapped more when 16E5 truncation mutants no longer bound to YIPF4 

(Figure 4.4 and Figure 4.6).  

 

It is conceivable that E5 and YIPF4 partially co-localise within the cell to an 

extent that is not detectable by the immuno-fluorescence approach with PCC 

analysis used in this study. This is extremely likely considering that YIPF4 

homologues cycle between the ER and Golgi within the cell (1.8). YIPF4 could 

be located at the Golgi at steady state and only a small portion of the cellular 

YIPF4 pool cycle between ER and Golgi and co-localise with E5. This agrees 

with the observation that not the whole endogenous YIPF4 pool seems to 

interact with 16E5 (Figure 4.1). This minor co-localisation might be detectable 

by nycodenz gradient centrifugation (Yoshida et al., 2008). But further research 

is needed to investigate this hypothesis.  

 

Another explanation is likely to be found in the overexpression system used in 

this study. Due to the unavailability of a specific E5 antibody (4.3.1), the E5 

proteins had to be overexpressed with an epitope tag. The expression of 16E5 

with a small epitope tag (FLAG and HA, respectively) was vanishingly low and 

thus an immuno-fluorescent detection not possible (data not shown). Only a 

fluorescent tag, namely eGFP (Figure 4.3, Figure 4.5, Figure 4.12, Figure 4.14) 

and mCherry (Figure 4.8) allowed sufficient expression of the E5 proteins. 

These tags (27 kDa) are, however, three times the size of 16E5 (9 kDa) and 

more than five times of BPV1 E5 (5 kDa). This could have an effect on their 

cellular distribution (see below).  
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This does not appear to be the case for GFP-16E6 and GFP-16E7 (Figure 

4.12). GFP-16E6 was clearly distributed throughout the cell as seen with HA 

tagged E6 (Guccione et al., 2002). The majority of GFP-16E7 was detected in 

the nucleus in accordance with the HA tagged 16E7 investigated by others 

(Guccione et al., 2002). Some GFP-16E7 localised to the cytoplasm but this 

was also observed for endogenous E7 of CaSki cells in subcellular fractionation 

experiments (Smotkin and Wettstein, 1987).  

 

Due to the lack of a 16E5 antibody, the GFP fusion protein was frequently used 

in PV E5 research. It retains its function of binding to 16K, as determined by Co-

IP (Figure A. 5), which serves as a surrogate for a conserved biological activity.  

Its localisation was directly compared with the localisation of 16E5 with the 

much smaller BPV E2 hinge epitope in HeLa cells and their localisation 

appeared identical (Auvinen et al., 2004). A similar comparison with AU1 tagged 

codon adapted 16E5 also found no marked differences caused by the epitope 

tags (Gruener et al., 2007).  

In our hands GFP-16E5 does not localise to the trans-Golgi network because its 

expression does not overlap with YIPF4 and hence the trans-Golgi network 

marker TGN46 (Figure 4.12 and Figure 4.14). When GFP-16E5 was expressed 

in HaCaT cells (Lewis et al., 2008) and HeLa cells (Auvinen et al., 2004) by 

others it co-localised with 58K, another trans-Golgi network marker. A co-

localisation with a further trans-Golgi network marker, golgin-97, and the cis-

Golgi marker GM130 was, however, not observed (Auvinen et al., 2004). This 

study also disproved the co-localisation of GFP-16E5 with the early endosome 

marker EEA-1, the late endosome marker Rab7 and the lysosome marker 

LAMP-1.  

A codon adapted 16E5 with a FLAG epitope tag expressed in HaCaT cell, 

however, co-localised with EEA-1 and LAMP-2 (Lewis et al., 2008). But the 

localisation of codon adapted and WT 16E5 diverged markedly in this study, 

which might explain this discrepancy.  

GFP-16E5 expression in HaCaT cells did not show significant co-localisation 

with the ER marker protein calnexin (Lewis et al., 2008). But others observed 

GFP-16E5 localisation in the ER (Ashrafi et al., 2006b). In our hands, although 

staining with an ER marker was not successful (data not shown), GFP-16E5 



190 

 

conveys the impression of ER-like distribution as well. Others also detected 

16E5 with a RNGS epitope tag predominantly in the ER (Conrad et al., 1993).  

Besides, the same RNGS-16E5 was detected in the Golgi and the nuclear 

membrane. A T7 tagged 16E5 was seen to form perinuclear aggregates 

(Gieswein et al., 2003) while Hu and colleagues detected HA tagged 16E5 at 

the plasma membrane (Hu and Ceresa, 2009).  

Concluding from this, the cellular localisation of 16E5 appears to depend on 

several factors. These might include the epitope tag, the overexpression 

system, and the cell line and codon usage of the 16E5 protein.  

It is conceivable that the use of a different expression system for 16E5 might 

have confirmed a co-localisation with its binding partner YIPF4.  

 
The same observation was made for the GFP-16E5 truncation mutants. In our 

hands, the GFP-16E5 truncation mutants mainly showed an ER-like distribution 

in Huh7 and SiHa cells (Figure 4.3 and Figure 4.5). But the V36 and R30 

truncation mutants localised slightly more at the Golgi since its co-localisation 

with YIPF4 increased. The same full-length and truncation mutants expressed 

by others in HaCaT cells, however, showed consistent overlapping localisation 

with the Golgi marker BODIPY-TR-ceramide (Ashrafi et al., 2006b). No variation 

of cellular localisation was detected with decreasing lengths of the mutants as in 

this study. Others used a T7 tagged deletion mutant of the 3rd TMD (equivalent 

to the A54 used in this study), which showed a more dispersed localisation 

compared to the full-length construct (Gieswein et al., 2003). But all the 

truncation mutants remained endomembrane proteins. This was confirmed with 

HA tagged truncation mutants, which were all associated with membranes in an 

in vitro translation assay (Rodriguez et al., 2000).  

These examples indicate that the exact cellular localisation of the 16E5 

truncation mutants is as controversial as for the full-length protein and possibly 

depends on similar factors.  

As long as no suitable antibody is available to 16E5 it could be tried to insert a 

small epitope tag into the viral genome. This would allow the detection of 16E5 

at near physiological levels and might even lead the way to the expression of 

E5 truncation mutants in the HPV genome context. However, unpublished 
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attempts at this suggest that insertion of epitope sequences may adversely 

affect genome splicing (Lamonis Laimins, personal communication). 

 

A co-localisation of 16E5 and YIPF4 was only seen when both proteins were 

overexpressed with a fluorescent tag (Figure 4.9). The expression of YIPF4 with 

a N-terminal GFP tag is likely to retain its function since this was observed for 

its orthologue in yeast, Yip1p (Chen and Collins, 2005a, Heidtman et al., 2003). 

The fluorescent tags of E5 and YIPF4 allow more efficient expression of both 

proteins. With this they form an exception because simultaneous expression of 

these proteins with differing epitope tags or endogenous YIPF4 lead to the 

decrease of expression efficiency (discussed in 4.3.1). The increased amount of 

YIPF4 in the cell was shown to lead to its accumulation in the ER rather than its 

natural localisation at the Golgi (discussed in 3.3.2). The expression of YIPF5 

as a GFP fusion protein also altered its cellular localisation from the ERGIC to 

the ER and the ER exit sites (Kano et al., 2009) maybe due to similar 

accumulation of the protein. For this reason, GFP-YIPF4 shows significant co-

localisation with the ER-like localised Cherry-FLAG-16E5. It is therefore 

conceivable, that the co-localisation observed here might be an artefact of the 

overexpression of fluorescently tagged E5 and YIPF4. This stresses the urgent 

need for a specific and fully functional 16E5 antibody. Only when both 

interaction partners are investigated at endogenous level in the same cell can 

their co-localisation be determined conclusively.  
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4.3.4. YIPF4 interacts with 16E5 but not with 16E6, 16E7 

YIPF4 was found to interact with only one of the three HPV16 oncoproteins, 

namely E5. 16E6 and 16E7 were not bound by YIPF4 emphasising the 

specificity of its interaction with 16E5 (Figure 4.11). This allows speculations 

about the functions of this protein complex which may play a complementary 

role to the functions of 16E6 and 16E7. 

 

Indeed, 16E5 in combination with 16E7 was shown to mediate cell proliferation, 

colony formation and development of tumours in transgenic mice (4.1). This 

leaves room for some involvement of the 16E5/YIPF4 complex in host cell 

transformation. However, since YIPF4 does not directly interact with the main 

transforming proteins 16E6 and 16E7, host cell transformation is unlikely to be 

the primary role of the 16E5/YIPF4 complex.  

 

The 16E7 protein induces alkalisation of cellular compartments via the Na+/H+ 

exchanger (Reshkin et al., 2000). HPV16 E5 contributes to this by binding to 

16K (Straight et al., 1995) or maybe by disruption of endosome trafficking 

(Thomsen et al., 2000, Suprynowicz et al., 2010). Thus, the 16E5/YIPF4 

complex might play a role in the alkalisation of cellular compartments. 

 

The oncoproteins were also shown to jointly mediate HLA class I down-

regulation from the cell surface (1.3.7). Induction of 16E7 expression reduced 

HLA class I at the cell surface (Bottley et al., 2008) and the same was observed 

for 16E5 (Ashrafi et al., 2005). This might be associated with the modulation of 

intracellular trafficking that could be altered by 16E6 effects on cystic fibrosis 

trans-membrane regulator-associated ligand (Jeong et al., 2007) and 16E5 

impact on the actin cytoskeleton (Thomsen et al., 2000) or endosome fusion 

(Suprynowicz et al., 2010).  

 

Thus, because the HPV oncoproteins achieve the same effect by different 

mechanisms, it is indeed possible that the 16E5/YIPF4 complex plays a 

complementary role to 16E6 and 16E7 functions. However, further 

investigations are needed identify the function of the E5/YIPF4 complex.  
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4.3.5. YIPF4 interacts with E5 proteins from various PV types 

In this study we showed that YIPF4 interacts with E5 proteins from a 

representative panel of PV types with equal affinity (Figure 4.13).  

There are four families (α, β, γ, δ) of HPV E5 proteins according to phylogenetic 

analysis (1.6) (Bravo and Alonso, 2004). We successfully tested E5 proteins 

from three of these families for its interaction with YIPF4: E5α = HPV16, 18, 31; 

E5β= HPV2a and E5γ = HPV6b, 11. TAP-MS analysis using IMR-90 normal 

human diploid fibroblasts transfected with E5 ORFs from different HPV types 

confirmed YIPF4 as a potential interaction partner of HPV16, HPV18 and 

HPV6b E5 protein, respectively (Rozenblatt-Rosen et al., 2012). It is likely that 

YIPF4 also interacts with further members of these E5α, -β, -γ families. 

 

The ungulate E5 proteins were not included into this phylogenetic classification. 

But the prototypic BPV1 E5 clearly bound to the human YIPF4. The YIPF4 

protein is highly conserved amongst different species so in all probability, the 

bovine YIPF4 will bind to the BPV1 E5 protein as well. The alignment of the 

bovine YIPF4 amino acid sequence with the human version revealed that the 

E5 binding region of amino acids 118 - 138 is identical between the two proteins 

(Figure A. 2). It is also completely conserved for the YIPF4 protein of rhesus 

macaque, house mouse, brown rat, grey wolf, chicken and zebrafish and highly 

identical to Caenorhabditis elegans. This could mean that E5 proteins from 

other PV types might interact with their respective YIPF4 protein.  

 

In contrast to this, the HPV E5 proteins of the four families and their relatives 

from other animal PV types are hardly conserved regarding amino acid 

sequences. They do not have conserved binding domains (4.1) and might thus 

not share the same interaction mode with YIPF4. This was seen for the 

interaction of HPV16 E5 and BPV1 E5 with 16K. It is most likely mediated by 

hydrophobic interactions of 16E5 to the 4th TMD of 16K (Adam et al., 2000). But 

for BPV the interaction of glutamine 17 of E5 with a glutamic acid 143 in the 4th 

TMD of 16K is mediating the binding (Andresson et al., 1995). Thus, the binding 

sites to YIPF4 have to be determined individually with truncation and point 

mutants of the respective E5 proteins.   
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The E5/YIPF4 complex must play a significant role for virus infection since it 

appears to be conserved amongst PVs. Concluding from the properties of 

16E5, it could play a role in host cell transformation, viral life-cycle and immune 

evasion.  

 

The role in cell transformation could be complementary to the functions of E6 

and E7 proteins as described (4.3.4). It is also noteworthy that YIPF4 interacts 

with the E5 protein of BPV1. In this PV type E5 constitutes the main 

oncoproteins (Surti et al., 1998, Schlegel et al., 1986) which would make a 

contribution of the E5/YIPF4 complex to host cell transformation plausible. On 

the contrary, the binding affinity to the low-risk, high-risk and cutaneous E5 

proteins was equally strong implying that a role in the viral life-cycle or immune 

evasion is more likely. 

 

E5 functions in the viral life-cycle and contributes to evasion from the host 

immune system (1.6.2 and 1.6.3). Some of these functions might be mediated 

by the modification of intracellular trafficking of e.g. HLA class I and II and 

CD1d. Concluding from the homologues of YIPF4 in yeast and mammals, 

YIPF4 is also likely to play a role in intracellular trafficking events (1.8). It is 

therefore conceivable that the E5/YIPF4 complex exerts an important function in 

the viral life-cycle or immune evasion by modulation of intracellular trafficking. 

Notably, YIPF4 expression was rescued upon HFK differentiation by presence 

of the HPV18 WT and E5 KO genomes (Figure 3.7 and Figure 3.8). YIPF4 

might therefore play a further, E5 independent role in the HPV life-cycle. 

 

In summary, YIPF4 was established as a novel interaction partner of 16E5. The 

binding regions were identified as the 2nd TMD of 16E5 and amino acids 118 - 

138 of YIPF4 requiring correct cellular localisation. The other HPV16 

oncoproteins E6 and E7 do not interact with YIPF4. Most importantly the 

interaction was conserved for E5 proteins from a representative panel of PV 

types. It is likely that the E5/YIPF4 complex plays an important role for the virus 

other than transformation of the host cell. The investigation of its function is the 

subject of the next chapter.  
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Chapter 5. Investigation of the function of the 16E5/YIPF4 

complex 

5.1. Introduction 

The interaction with YIPF4 is highly conserved amongst a representative panel 

of PV E5 proteins (Chapter 4). It is equally conserved for cutaneous, low-risk 

and high-risk HPV types as well as BPV1 and therefore the E5/YIPF4 protein 

complex is unlikely to play a role in host cell transformation. A contribution to 

the viral life-cycle or viral immune evasion is considered more probable. The 

cellular functions of YIPF4 have not been investigated yet but referring to its 

homologues in yeast and mammals it is likely to play a role in cellular trafficking 

(1.8). E5 also mediates some of its cellular roles by the modification of 

endocytic and exocytic trafficking (Figure 1.7). The modulation of HLA/MHC 

class I exocytic trafficking has been shown to be common to PVs E5 proteins 

(Ashrafi et al., 2006a).  

 

In a flow cytometry approach, untagged E5 was shown to reduce the HLA class 

I cell surface levels of stably expressing HaCaT and NIH3T3 cells by 

approximately 50% compared to control cells (Ashrafi et al., 2005). The same 

effect was seen in primary bovine PalF cells that were transformed with a 

retrovirus expressing 16E5. Also, transient expression of a GFP-16E5 fusion 

protein in HEK293T cells resulted in a down-regulation of 35% (Gruener et al., 

2007).  

This down-regulation was found to be specific for certain HLA class I types. 

HPV16 E5 can reduce HLA class I types A and B but not C and E on the cell 

surface (Ashrafi et al., 2006b, Ashrafi et al., 2005, Campo et al., 2010). When 

treated with IFN-β, HPV E5 expressing cells can overcome the reduced HLA 

class I cell surface exposure (Ashrafi et al., 2005).  

 

Crucially, it was confirmed that 16E5 reduces HLA class I by blocking its 

trafficking to the cells surface. Immuno-cytochemistry with the Golgi-marker 
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golgin showed that HLA class I is retained in the Golgi (Ashrafi et al., 2005). 

The expression level of the HLA HC and TAP were not affected. A decrease of 

total HLA class I protein or inhibition of complex assembly therefore do not 

qualify as an explanation for this phenomenon. 

The exact mechanism for the retention of HLA class I in the Golgi is 

controversial. Cortese and colleagues employed point mutants in Co-IP assays 

to confirm a direct interaction of two di-leucine motifs in the 1st TMD of 16E5 

with the HLA HC (Cortese et al., 2010). They propose this interaction as the 

reason for the Golgi-retention (Ashrafi et al., 2006b, Cortese et al., 2010). 

Gruener and colleagues, however, reason that the formation of a ternary 

complex of 16E5 and HLA class I HC with calnexin causes the retention 

(Gruener et al., 2007). Another possible mechanism could be the interaction of 

16E5 with the ER resident chaperone Bap31 (Regan and Laimins, 2008). An 

involvement in this process, however, still needs investigation.  

 

The 16E5 mediated down-regulation of HLA class I molecules from the cell 

surface was indeed shown to contribute to viral immune evasion. The 

exogenous co-expression of the HLA-A2 type and 16E5 in mouse mastocytoma 

cells not only show the expected down-regulation of cell surface HLA-A2 but 

also the consequential reduced recognition by CD8+ T cells (Campo et al., 

2010). This successful evasion from the host immune surveillance was 

confirmed with patient samples that exhibited only rare CD8+ T cell response to 

16E5 (Liu et al., 2007).  

 

The down-regulation of HLA/MHC class I molecules by E5 proteins is 

conserved amongst three different phylogenetic families (Bravo and Alonso, 

2004). The E5α proteins are represented by 16E5 (Ashrafi et al., 2005), but also 

the E5β proteins of HPV2a and HPV83 (Ashrafi et al., 2006a, Cartin and 

Alonso, 2003) and the E5γ protein of HPV6b (Ashrafi et al., 2005) down-

regulate cell surface HLA class I molecules. The only tested E5 proteins from 

the ungulate BPV1 and BPV4 also decreased MHC class I at the cell surface 

(Araibi et al., 2004, Araibi et al., 2006, Ashrafi et al., 2002, Marchetti et al., 

2002). However, the E5 proteins employ different mechanisms to achieve the 

same goal. The ungulate E5 proteins e.g. down-regulate total MHC class I 
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molecule levels on transcriptional level and also promote its degradation in 

addition to preventing its trafficking to the cell surface (Marchetti et al., 2005). 

Despite employing multiple complementary techniques to down-regulate 

HLA/MHC class I from the cell surface, all investigated E5 proteins universally 

perturb HLA/MHC trafficking. It is indeed very striking that YIPF4 is likely to be 

involved in secretory trafficking as well. But more importantly, it is known to 

interact with the same phylogenetic E5 proteins families that consistently inhibit 

HLA/MHC class I trafficking (Chapter 4). 

 

The aim of this chapter is therefore to establish a potential involvement of 

YIPF4 in the E5 mediated down-regulation of HLA class I molecules from the 

cell surface. First, the effect of transiently expressed E5 on the surface levels of 

HLA class I molecules is sought to be verified by flow cytometry. A knock down 

of endogenous YIPF4 is achieved by utilisation of specific siRNA. The effect of 

the YIPF4 depletion of the cell surface HLA class I expression is examined by 

flow cytometry. Because of the clinical significance of HPV16 it is the focus of 

these investigations.   
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5.2. Results 

5.2.1. GFP-16E5 did not have an effect on cell surface HLA class I 

molecules 

5.2.1.1. GFP-16E5 did not down-regulate endogenous HLA class I 

molecules in SiHa cells  

A GFP-16E5 fusion protein was previously shown to down-regulate HLA class I 

molecules from the surface of HEK293T cells using an antibody against HLA-A, 

B and C (Gruener et al., 2007). In order to establish the potential involvement of 

YIPF4 in this process, this effect of E5 needed to be verified first.  

SiHa cells were transiently transfected with GFP-16E5 and free GFP as a 

negative control. A GFP fusion protein of human cytomegalovirus (HCMV) US6 

was used as a positive control. US6 is known to reliably down-regulate HLA 

class I from the cell surface by preventing peptide loading and consequently 

correct assembly of the HLA class I complex (Ahn et al., 1997, Hewitt et al., 

2001, Kyritsis et al., 2001).  

 

The SiHa cells were stained 16h post-transfection with the W6/32 antibody that 

recognises the HLA class I types A, B and C and analysed by flow cytometry. 

Propidium iodide (PI) was used to evaluate cell viability. The gates for live (PI 

negative) and successfully stained cells were established by analysing 

untransfected cell populations that were not stained with W6/32 and either 

untreated or treated with PI (data not shown). From 500 000 collected single 

cells, only the live and GFP positive cells were analysed for HLA class I cell 

surface levels (Figure 5.1).  

 

Prior to analysing the HLA class I cell surface expression level, the cell count 

revealed a significantly lower expression efficiency of the GFP-16E5 fusion 

protein (p ≤ 0.01) (Figure 5.1A). In the seven cell populations investigated, the 

mean percentage of GFP-16E5 positive cells was 4% (± 1.1) in contrast to 20% 

(± 4.3) of free GFP expressing cells and 22% (± 4.3) of GFP-US6 expressing 

cells. Due to the high number of collected single cells, an average of 14893 (± 
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4921) live, GFP-16E5 positive cells per replica were analysed despite the low 

expression efficiency. This was sufficient for meaningful statistical analysis. 

 

When observing the HLA class I cell surface expression, the negative control, 

free GFP expressing cells, was regarded as base value. The histogram of the 

positive control, GFP-US6 expressing cells, showed a clear shift towards the 

lower fluorescence indicative of successful cell surface down-regulation of HLA 

class I (Figure 5.1B). This signified that this fluorescence-activated cell sorting 

(FACS)-based assay for determination of cell surface HLA class I levels was 

producing reliable results. However, very surprisingly, the histogram of the 

GFP-16E5 expressing cells showed a minute shift towards increased 

fluorescence which would imply an up-regulation of HLA class I to the cell 

surface.  

 

This experiment was repeated a total of seven times (Figure 5.1C) to draw 

statistically supported conclusions. Compared to the GFP expressing cell 

population, only the GFP-US6 expressing cells showed a statistically significant 

down-regulation of surface HLA class I molecules of 23% (± 8.8) (p ≤ 0.01). 

GFP-16E5 expressing cells up-regulated HLA class I molecules by 9.1% (± 

19.5), however, this was not statistically significant. These observations 

contradict the 16E5 mediated down-regulation of HLA class I that was observed 

before (Ashrafi et al., 2005, Gruener et al., 2007).  
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Figure 5.1 HLA class I cell surface regulation by 16E5. SiHa cells were transfected with 

GFP-16E5 as well as the negative control GFP and the positive control GFP-US6. Cells 

were harvested 16 h post-transfection and stained with W6/32 and Alexa Fluor® 647 goat 

anti-mouse IgG antibody. A flow cytometer was used to collect 500 000 single cells and 

analyse the live (PI negative) and GFP positive cells for their cell surface HLA class I levels. 

A. Relative expression efficiency of GFP and GFP fusion proteins in the live cell population. 

B. Histograms of a representative flow cytometry experiment are shown C. Results of seven 

independent experiments are depicted in the bar chart. Each bar represents the mean 

fluorescence in the HLA class I channel (± SDM). A one-way ANOVA was performed (A. and 

C.) **p ≤ 0.01  
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5.2.1.2. GFP-16E5 did not down-regulate exogenously expressed HLA-A2 

in SiHa cells 

Contrary to expectations, GFP-16E5 did not cause cell surface down-regulation 

of the endogenous HLA class I molecules in SiHa cells (5.2.1.1). HPV16 E5 is 

also known to specifically down-regulate exogenously expressed HLA-A2 from 

the cell surface (Campo et al., 2010). Since SiHa cells do not express this HLA 

class I type (Schoell et al., 1999), we sought to verify the 16E5 induced down-

regulation of exogenously expressed HLA-A2 in SiHa cells.  

 

SiHa cell were transfected with GFP-16E5 and untagged HLA-A2 in a ratio of 

1:2 to ensure that every cell expressing GFP-16E5 was also expressing HLA-

A2. GFP was co-expressed with HLA-A2 in the same 1:2 ratio to make up the 

base value. A third cell population was transfected with free GFP only to serve 

as a HLA class I expression control. The HCMV US6 protein does not 

effectively down-regulate the HLA-A2 type (Dugan and Hewitt, 2009) and could 

therefore not be used as a positive control in this assay. 

 

Cells were stained for HLA-A2 16h post-transfection with the specific antibody 

BB7.2. The gates for live (PI negative) and successfully stained cells were 

established as before (5.2.1.1). From 500 000 collected live cells only the GFP 

positive cells were analysed for HLA-A2 cell surface expression (Figure 5.2).  

The expression efficiencies were similar to those observed earlier (Figure 5.1A). 

With only 3% (± 1.4) the transfection efficiency for GFP-16E5 was markedly 

lower compared to GFP (15% ± 2.3 and 16% ± 3.3, respectively) (p ≤ 0.01). 

Despite this, an average of 9014 (± 2384) GFP-16E5 positive cells were 

analysed per sample which was sufficient for meaningful statistical analysis.  

 

The histogram of GFP expressing cells which served as a HLA-A2 expression 

control formed a peak at low intensity in the HLA-A2 fluorescent channel (Figure 

5.2B). This was regarded as a false positive signal. The GFP and HLA-A2 

expressing cells had a peak around the same fluorescent intensity that probably 

accounts for GFP expressing cells that were not successfully co-transfected 

with HLA-A2. A second peak was recorded at a ~ 2 log higher fluorescent 
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intensity. This cell population effectively co-expressed GFP and HLA-A2 and 

were regarded as base value. GFP-16E5 and HLA-A2 transfected cells 

exhibited a minor peak only for HLA-A2 untransfected cells. The peak at higher 

HLA-A2 fluorescence accounting for co-transfected cells almost coincided with 

the same peak for GFP and HLA-A2 expressing cells. However, it was remotely 

shifted towards greater fluorescence intensity. This means that GFP-16E5 

expression slightly promoted HLA-A2 cell surface levels which is in contrast to 

what was observed by others (Campo et al., 2010).  

 

A total of six repetitions of the experiment and subsequent statistical analysis 

confirmed the phenomenon observed. Only cells that confidently expressed 

HLA-A2 were considered for the analysis (Figure 5.2B, dashed box). The HLA-

A2 recognition of the BB7.2 antibody was significantly increased by 760% in 

GFP and HLA-A2 expressing cells compared to the HLA-A2 expression control 

cells (p ≤ 0.01) (Figure 5.2C). This confirmed not only that SiHa cells are HLA-

A2 negative but also that expression of exogenously expressed HLA-A2 was 

successful. Grounded on the base value, GFP-16E5 expressing cells exhibited 

a significant up-regulation of cell surface HLA-A2 by 29.7% (± 21.8) (p ≤ 0.01). 

This confirmed the observation made in the histogram (Figure 5.2B) but is in 

contrast to published findings (Campo et al., 2010).  
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Figure 5.2 Cell surface regulation of HLA-A2 by 16E5. SiHa cells were transfected with GFP-

16E5 + HLA-A2 as well as the negative controls GFP and GFP + HLA-A2. Cells were 

stained with BB7.2 and Alexa Fluor® 647 goat anti-mouse IgG antibody for HLA-A2 16 h 

post-transfection. A flow cytometer was used to collect 500 000 live (PI negative) cells and 

analyse the GFP positive cells for their HLA-A2 cell surface levels. A. Relative expression 

efficiency of GFP-16E5 and GFP, respectively, in live cells. B. Histograms from a 

representative flow cytometry experiment are shown. The mean fluorescence in the 

indicated box was used for comparative analysis. C. The data from six independent 

experiments are summarised in the bar chart. Each bar represents the mean fluorescence of 

the HLA-A2 channel (± SDM). A one-way ANOVA was performed (A. + C. ) **p ≤ 0.01  
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5.2.2. YIPF4 was not involved in HLA class I cell surface regulation 

5.2.2.1. Determination of YIPF4 half-life 

The 16E5 induced down-regulation of cell surface HLA class I molecules could 

not be verified (5.2.1.1, 5.2.1.2) and thus the investigation of the involvement of 

YIPF4 in this process was not possible. However, due to the localisation of 

YIPF4 at the Golgi and its potential role in intracellular trafficking (Figure 1.7) we 

sought to investigate whether YIPF4 may play a role in HLA class I secretory 

trafficking. This was tested by siRNA mediated knock down of YIPF4 and 

subsequent observation of the effect on HLA class I cell surface level.  

 

To achieve efficient knock down, the half-life of endogenous YIPF4 needed to 

be determined. For this, U-2 OS cells were incubated with the translation 

elongation inhibitor cycloheximide for up to 72 h. Several time points were taken 

and the YIPF4 protein levels monitored on a Western blot (Figure 5.3A). For 30 

h of translational inhibition, YIPF4 protein levels appeared to be constant. Only 

after 48 h a marked decrease in YIPF4 protein levels could be observed and an 

almost complete absence at 72 h. The YIPF4 half-life therefore ranged between 

30 h and 48h.  

 

The densitometry analysis of this Western blot allowed a closer examination of 

the YIPF4 half-life (Figure 5.3B). The YIPF4 protein levels were determined in 

relation to the loading control actin and plotted as a scatter graph. A fitted linear 

trend line (R2 = 0.838) enabled the calculation of the YIPF4 half-life according to 

its equation (y = -0.0109x + 0.8641). The YIPF4 half-life emerged to be ~ 44 h.  
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Figure 5.3 Determination of YIPF4 half-life. A. The half-life of YIPF4 was determined in U-2 

OS cells by incubation with 100 μg/ml cycloheximide. The YIPF4 expression level was 

monitored on a Western blot at several time points. B. Densitometry analysis of YIPF4 

expression levels relative to the loading control actin. A linear trendline (dotted line) was 

fitted that allowed approximate determination of the YIPF4 half-life ≈ 44 h (dashed line).  
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5.2.2.2. YIPF4 was successfully knocked down with specific siRNA 

The knock down of YIPF4 was mediated with siRNA. Four specific commercial 

siRNAs were tested. Here, only data for the effective siRNA4 are presented.  

The 21-nucleotide siRNA4 completely aligned to bp 503 - 523 of the YIPF4 

mRNA (Figure 5.4A) which forms part of the hydrophilic N-terminus in the 

protein. A BLASTN search confirmed that these 21 nucleotides did not align 

with transcripts of other human genes (data not shown) thus reducing the 

probability of off target effects.  

SiHa cells were transfected with 300 ng siRNA4 and incubated for up to 72 h 

while taking several time points. The YIPF4 protein level was monitored on a 

Western blot (Figure 5.4B). A reduction of YIPF4 protein level was detected 16 

h post-transfection and a near absence of YIPF4 after 40 h.  

Densitometry analysis revealed a 97% knock down of YIPF4 40 h post-

transfection (Figure 5.4C). This was a more efficient knock down than expected 

based on the data from the cycloheximide experiment (5.2.2.1).  
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Figure 5.4 Knock down of YIPF4 with specific siRNA. A. The sequence of the 21nt siRNA4 

was aligned to the mRNA sequence of YIPF4 (NCBI Ref. NM_032312.3). The overlapping 

sequences are shown as well as the beginning and end of the YIPF4 mRNA sequence. B. 

SiHa cells were transfected with 300 ng of siRNA. The YIPF4 protein levels were monitored 

at several time points on a Western blot. C. The protein levels of YIPF4 were determined 

relative to GAPDH by densitometry analysis of the Western blot (B). 
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5.2.2.3. siRNA mediated knock down of YIPF4 did not affect cell surface 

HLA class I expression  

The effect of YIPF4 on HLA class I trafficking was examined by comparing the 

HLA class I cell surface levels in siRNA4 (Figure 5.4) transfected cells with 

untransfected cells. The untransfected cells served as the base value. A 

commercial negative control siRNA (siRNA NC) was included to exclude 

possible nonspecific effects caused by transfection with siRNA.  

 

The SiHa cells that were transfected with siRNA4 and siRNA NC, respectively, 

were incubated for 40 h to guarantee sufficient knock down (5.2.2.2). Aliquots of 

three samples sets were analysed by Western blot for YIPF4 protein levels 

(Figure 5.5) to verify the flow cytometry data (Figure 5.6). Compared to 

untransfected cells, the YIPF4 protein levels in siRNA4 transfected cells were 

obviously decreased. The siRNA NC appeared to elevate the YIPF4 protein 

levels in sample sets 2 and 3. The densitometry analysis confirmed a relative 

knock down of YIPF4 in sample set 1 (80%), set 2 (50%) and set 3 (40%) 

(Figure 5.5B). The surprising up-regulation of YIPF4 protein levels by siRNA NC 

could be described for sample set 2 (30%) and set 3 (100%). The reason for the 

up-regulation of YIPF4 protein levels by the siRNA NC was not investigated 

further.  

 

The HLA class I molecules of the remaining cells were stained with W6/32. PI 

was used as a viability marker and the respective gate was established using 

untransfected, PI negative cells (data not shown). The 100 000 collected live 

cells were analysed for their HLA class I cell surface expression (Figure 5.6). 

The histogram of untransfected cells was used as the base value (Figure 5.6A). 

According to expectations, the histogram of the siRNA NC cell population 

almost overlapped with the untransfected cells. Only a minor shift towards 

decreased fluorescence intensity was observed. Thus, the siRNA NC did not 

non-specifically alter HLA class I cell surface levels. Interestingly, the histogram 

of cells transfected with YIPF4-specififc siRNA4 also overlapped with the 

untransfected cells. Therefore, YIPF4 appeared not to be involved in HLA class 

I cell surface regulation.  
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These observations were statistically supported by evaluating the data from the 

three sample sets (Figure 5.6B). Cells transfected with YIPF4-specififc siRNA4 

showed an average HLA class I cells surface down-regulation of 6.1% (± 19.4). 

This, however, was not significantly different from the untransfected control 

cells. The same was true for the siRNA NC transfected cells that showed an 

average down-regulation of 15.9% (± 6.1). Concluding from this, YIPF4 does 

not play a role in HLA class I cell surface regulation. 
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Figure 5.5 Verification of the knock down of YIPF4 in the SiHa cells analysed for HLA class I 

surface expression. A. An aliquot of the samples analysed by FACS (Figure 5.6) was lysed 

and the YIPF4 protein levels were observed on a Western blot. B. The protein levels of 

YIPF4 were determined by densitometry relative to the loading control GAPDH. YIPF4 was 

knocked down between 80%, 50% and 40%, respectively. The numbers 1, 2 and 3 indicate 

the number of the experimental repetition. ‘ / ‘ = untransfected cells; ‘ NC ‘ = siRNA NC 
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Figure 5.6 HLA class I cell surface expression in SiHa cells upon siRNA mediated knock 

down of YIPF4. SiHa cells were transfected with 300 ng of specific siRNA4. Forty hours 

post-transfection cells were stained with W6/32 and Alexa Fluor® 647 goat anti-mouse IgG 

antibody. A flow cytometer was used to analyse 100 000 live (PI negative) cells for their HLA 

class I cell surface expression. A. Histograms of a representative experiment are shown B. 

The data from three independent experiments were analysed. A one-way ANOVA revealed 

no significant differences between the samples. Each bar represents the mean fluorescence 

(± SDM) of the HLA class I channel. 
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5.2.3. Determination of the YIPF4 interactome 

In our hands, the 16E5 induced down-regulation of HLA class I could not be 

verified (5.2.1.1, 5.2.1.2). In addition, our data do not support a role for YIPF4 in 

HLA class I cell surface expression (5.2.2.3). To eventually establish the role of 

the E5/YIPF4 complex within the cell, we sought to determine the cellular role of 

YIPF4. This should greatly facilitate the investigation of the E5/YIPF4 complex. 

YIPF3 is the only known interaction partner of YIPF4 within the cell (Tanimoto et 

al., 2011) and its role is equally unclear. Therefore, we set out to determine the 

interactome of YIPF4 to be able to identify biological processes it might be 

involved in. This was achieved by immuno-precipitating YIPF4 and identifying 

binding partners by mass spectrometry analysis. 

 

The GFP-YIPF4 fusion protein and GFP, respectively, were expressed in 

HEK293T cells (Figure 5.7). Cells were harvested and lysed 20 h post-

transfection and the expression of the exogenous proteins confirmed on a 

Western blot (Figure 5.7, upper blot). Note that the GFP-YIPF4 fusion protein 

showed lower expression efficiency than free GFP. The same amount of total 

protein from these lysates was subject to IP with a GFP binding protein based 

on Camelidae HC antibodies coupled to magnetic beads. After o/n incubation 

and two washing steps, an aliquot of the eluates was successfully analysed on 

a Western blot for the presence of GFP and GFP-YIPF4 (Figure 5.7, lower blot). 

Again, GFP-YIPF4 was present to a lesser extent than free GFP. The eluates 

were trypsin digested and separately analysed by nano-LC ESI-MS/MS for their 

composition. The potential binding partners of YIPF4 were identified by label 

free quantification (LFQ) relative to GFP interacting proteins (performed at 

CECAD, Cologne, Germany) 
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Figure 5.7 Schematic of the procedure to determine cellular binding partners of YIPF4 by 

nano-LC ESI-MS/MS. For detailed description refer to main text (5.2.3).  
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5.2.3.1. Classification of YIPF4 binding proteins 

The LFQ resulted in a list of 1114 identified proteins for both samples (data not 

shown). The following criteria were applied to narrow down the identified 

proteins to increase confidence in potential YIPF4 binding partners: Only 

proteins that were identified by > 2 unique peptides were considered when 

these were enriched by ≥ 1.5 fold in the GFP-YIPF4 sample. In addition to that, 

the unique peptides accounting for the enrichment needed to be ≥ 1/3 of the 

overall peptide count of the protein. These criteria narrowed down the list to 105 

potential YIPF4 binding partners (Table 5.1, Table A. 7, Table A. 8). These were 

categorised according to their molecular function (Figure 5.8) and biological 

processes (Figure 5.9) with the PANTHER classification system (Mi et al., 

2013). Note that the PANTHER classification system did not recognise the 

UniProt IDs for pinin, probable ATP-dependent RNA helicase and histone 

deacetylase complex subunit, thus, the analysis was based on a list of 102 

potential YIPF4 binding partners.  

 

The annotation of the protein list according to the molecular function revealed 

that a majority of potential YIPF4 interaction partners (45%) were involved in 

binding (Figure 5.8A). Most of these bound to nucleic acid (86%) of which 62% 

constitute RNA (data not shown). A quarter of potential YIPF4 interaction 

partner exerted catalytic activity (25.4%) (Figure 5.8A) with almost half of them 

being involved in RNA splicing (45.7%) (Figure 5.8B). The third largest class of 

YIPF4 binders served as structural molecules (18.3%) (Figure 5.8A) 

predominantly by constituting ribosomes (90.3%) (Figure 5.8B). It was striking 

that many of these proteins are localised in the cell nucleus (Table A. 7) which 

deviates from the Golgi localisation of endogenous YIPF4.  

 

The classification of the potential YIPF4 interaction partners according to their 

biological function revealed a great involvement in metabolic processes (45.1%) 

(Figure 5.9A) which were classified as primary metabolic processes (100%) 

(Figure 5.9B). Very interestingly for the HPV context, 12% of potential YIPF4 

interaction partners played a role in cellular processes (Figure 5.9A) and 

predominantly the cell cycle (43.3%) (Figure 5.9B). A minority of binding 
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partners were classified as transport proteins (5.4%) (Figure 5.9A) of which 

46.7% mediate protein transport and 13.3% vesicle transport (Figure 5.9B). This 

was in accordance with the suspected function of YIPF4 (5.1). Although no 

effect on the HLA class I cell surface regulation was observed (5.2.2.3), 3.8% of 

potential YIPF4 interaction partners were involved in immune response to IFN-γ 

(Figure 5.9A).  

 

Concluding from this annotation of potential YIPF4 binding partners, YIPF4 

appeared to play a role in the metabolism of the cell which includes RNA 

binding, splicing and translation. However, as mentioned before, the majority of 

these proteins were localised in the nucleus (Table A. 7) and should therefore 

not be accessible to the Golgi-localised YIPF4 within the living cell (see 5.3.3.1). 

Table 5.1 summarises the more confident potential YIPF4 binding partners that 

are not confined to the nucleus (discussed in 5.3.3.1).  
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Figure 5.8 Analysis of the molecular functions of the potential cellular binding partners of 

YIPF4. The LFQ by mass spectrometry returned 105 cellular proteins as probable binding 

partner of YIPF4. The UniProt IDs were used to analyse the molecular functions of the 

proteins using the PANTHER classification system. Three protein IDs were not recognised 

by PANTHER. A. Pie chart showing the categories of molecular functions represented by the 

probable YIPF4 binding partners. The three largest categories were examined further B. The 

pie charts represent the proteins from the three largest categories (A) and show their further 

composition.  
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Figure 5.9 The potential YIPF4 binding partners are involved in a variety of biological 

processes. The 102 probable cellular interaction partners of YIPF4 were categorised 

according to the biological processes they are involved in using the PANTHER classification 

system. A. Pie chart showing the categories of biological processes represented by the 

probable YIPF4 binding partners. The two largest and the ‘transport’ category were 

examined further B. The pie charts represent the proteins from the ‘metabolic processes’, 

‘transport’ and cellular processes’ category (A) and show their further composition.  
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Table 5.1 Potential YIPF4 binding partners determined with the LFQ approach. Proteins were annotated with the PANTHER classification system. Information 

about the cellular localisation was derived from the UniProt database.  

gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER 

protein class 
pathway 

P02765 
alpha-2-HS-
glycoprotein 

36.84 secreted 
α-2-HS- glycoprotein 

(FETUIN-A) 
(PTHR13814:SF6) 

protein binding, 
cysteine-type 

endopeptidase 
inhibitor activity 

immune system, 
proteolysis, 

mesoderm/skeletal 
system 

development 

extracellular 
matrix 

glycoprotein
, cysteine 
protease 
inhibitor 

n/n 

P62258 
14-3-3 protein 

epsilon 
13.82 cytoplasm 

14-3-3 protein epsilon 
(PTHR18860:SF10) 

n/n 
cell cycle, signal 

transduction 
chaperone 

EGF-R/FGF 
signalling 

Q9NYF8 

Bcl-2-
associated 

transcription 
factor 1 

7.55 
cytoplasm, 

nucleus 

BCL-2-associated 
transcription factor 1 
(PTHR15268:SF4) 

transcription 
factor activity 

induction of 
apoptosis, 

regulation of 
transcription from 

RNA polymerase II 
promoter 

transcription 
factor 

n/n 

P63244 

guanine 
nucleotide-

binding protein 
subunit beta-2-

like 1 

6.29 

cell membrane, 
cytoplasm, 
perinuclear 

region, dendrite 

n/n 
(PTHR19868:SF0) 

n/n 
protein targeting, 

signal transduction 
n/n n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER 

protein class 
pathway 

P05023 

sodium/potassi
um-

transporting 
ATPase 

subunit alpha-1 

4.93 

cell membrane; 
multi-pass 
membrane 

protein. 

n/n 
(PTHR24093:SF58) 

hydrolase 
activity, cation 

trans-
membrane 
transporter 
activity, ion 

channel activity 

cation transport, 
cellular calcium ion 

homeostasis 

cation 
transporter, 
ion channel, 
hydrolase 

n/n 

P13797 plastin-3 3.86 cytoplasm 
plastin 

(PTHR19961:SF8) 

structural 
constituent of 
cytoskeleton, 
actin binding 

cellular component 
morphogenesis 

non-motor 
actin binding 

protein 
n/n 

P06737 
glycogen 

phosphorylase, 
liver form 

3.71 
cytoplasm, 

plasma 
membrane 

n/n (PTHR11468:SF0) 
phosphorylase 

activity 
glycogen metabolic 

process 
phos-

phorylase 

Hetero-trimeric 
G-protein 

signalling, Gi 
alpha and Gs 

alpha mediated 
pathway-, 

phosphorylase 
a/b 

Q71U36 
tubulin alpha-

1A chain 
3.21 cytoplasm  

tubulin alpha chain 
(PTHR11588:SF10) 

structural 
constituent of 
cytoskeleton 

intracellular protein 
transport, mitosis, 

cell motion, 
chromosome 
segregation, 

cellular component 
morphogenesis  

tubulin 

gonadotropin 
releasing 

hormone receptor 
pathway 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER 

protein class 
pathway 

P50990 
T-complex 
protein 1 

subunit theta 
2.78 

cytoplasm, 
centrosome 

chaperonin containing 
T-complex protein 1, 
theta subunit, TCPQ 
(PTHR11353:SF19) 

n/n protein folding chaperonin n/n 

O60884 
dnaJ homolog 
subfamily A 
member 2 

1.79 
membrane, 
lipid-anchor 

n/n 
(PTHR24076:SF45) 

n/n 

immune system 
process, protein 
folding, response 

to stress 

chaperone n/n 

P60709 
actin, 

cytoplasmic 1 
1.75 cytoplasm 

n/n 
(PTHR11937:SF120) 

structural 
constituent of 
cytoskeleton 

intracellular protein 
transport, 

exocytosis, 
endocytosis, 

mitosis, 
cytokinesis, cellular 

component 
morphogenesis 

actin and 
actin related 

protein 

Alzheimer and 
Huntington 
disease-

presenilin, 
cytoskeletal 

regulation by Rho 
GTPase, nicotinic 

acetylcholine 
receptor, 

cadherin cytokine 
and integrin 
signalling, 

inflammation 
mediated by 
chemokine 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER 

protein class 
pathway 

P53621 
coatomer 

subunit alpha 
1.61 

cytoplasm, 
Golgi 

membrane; 
peripheral 
membrane 

protein; COPI-
coated vesicle 

membrane 

coatomer alpha 
subunit 

(PTHR19876:SF1) 
n/n 

intracellular protein 
transport, 

endocytosis, 
exocytosis 

vesicle coat 
protein 

n/n 

‘gene ID’ indicates the UniProt database ID; ‘enrichment factor’ indicates the enrichment of the respective protein in the GFP-YIPF4 

sample compared to the GFP control sample. n/n = not named; GO = gene ontology 
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5.3. Discussion 

5.3.1. GFP-16E5 does not (down-)regulate cell surface HLA class I 

molecules 

5.3.1.1. GFP-16E5 does not down-regulate endogenous HLA class I 

molecules in SiHa cells  

In this study, the 16E5 mediated down-regulation of HLA class I cell surface 

levels could not be verified (Figure 5.1). With the utilisation of a suitable positive 

control it was excluded that the lack of effect was evoked by an inadequate 

assay. This result is surprising because this effect of 16E5 is established in the 

literature and was shown in various cell lines using different techniques to 

exogenously express 16E5 (Ashrafi et al., 2006b, Ashrafi et al., 2005, Campo et 

al., 2010). Indeed, Gruener and colleagues used an N-terminal GFP fusion 

protein of 16E5 comparable to the one used in this study to successfully 

generate this effect in HEK293T cells (Gruener et al., 2007).  

 

Further investigations are needed to determine the reason for this discrepancy. 

The functional activity of the GFP-16E5 fusion protein could be explored by 

determining its ability to interact with the HLA HC or calnexin. However, its 

binding to the 16K subunit of the vacuolar H+ - ATPase was successfully shown 

(Figure A. 5). In addition, the similar GFP-16E5 fusion construct used by 

Gruener and colleagues interacted with HLA HC and calnexin in a ternary 

complex (Gruener et al., 2007). Thus, the large GFP tag at the N-terminus of 

16E5 does not cause the abrogation of binding to HLA HC and calnexin via the 

1st TMD. The ability to down-regulate HLA class I from the cell surface was 

directly compared between GFP tagged and HA tagged 16E5 with no major 

difference being observed (Gruener et al., 2007).  

 

The expression of calnexin was shown to be necessary for the E5 induced 

down-regulation of HLA class I from the cell surface (Gruener et al., 2007). The 

study here used SiHa cells, which express 4.8 fold less calnexin compared to 

HaCaT cells (Ahn et al., 2005). It is therefore conceivable, that the lack of down-

regulation observed is caused by insufficient amounts of calnexin in those cells.   
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The SiHa cell line contains 1 or 2 integrated copies of the HPV16 genome and 

was derived from a cervical SCC (Pater and Pater, 1985). This implies that the 

cells successfully evaded the patient’s immune system. Due to the way the 

HPV16 genome is integrated, SiHa cells do not express the 16E5 protein (Pater 

and Pater, 1985, Sahab et al., 2012). The immune evasion must have been at 

least partially mediated by another HPV protein. Indeed, siRNA mediated knock 

down of 16E7 in SiHa and CaSki cells significantly up-regulated HLA class I cell 

surface levels by 50% - 70% (Bottley et al., 2008, Li et al., 2006). This means 

that the 16E7 oncoprotein is also capable of inducing down-regulation of HLA 

class I molecules. It appears to achieve this effect with multiple strategies.  

 

It was shown that 16E7 represses HLA class I promoter activity (Georgopoulos 

et al., 2000, Li et al., 2006, Li et al., 2009). HPV16 E7 binds to a GGTCA motif 

upstream of the transcription initiation site to induce the repression (Li et al., 

2009). A complementary mechanism is the interaction with histone deacetylase 

1 (Li et al., 2006) which is most likely mediated by its C-terminal amino acid 

residues at position 78, 80 and 88 (Heller et al., 2011). The deacetylation of the 

chromatin around the HLA class I promoter in CaSki cells was shown to prevent 

transcription from this promoter (Li et al., 2006). The inaccessibility of the 

promoter not only prevents the constitutive expression of the HLA class I gene 

but also its inducible expression (Li et al., 2006). The HLA class I promoter can 

no longer be accessed by the transcription factor NF-κB which is induced by 

specific cytokines. In addition to that, NF-κB is sequestered in the cytoplasm to 

prevent induction of transcription. Therefore, in contrast to 16E5, 16E7 down-

regulates HLA class I on a transcriptional level.  

An additional mechanism of 11E7 mediated cell surface down-regulation of HLA 

class I is the direct binding to TAP-1 (Vambutas et al., 2001). The interaction 

inhibits the transport of peptides from the cytoplasm into the ER lumen. This 

eventually prevents the correct assembly of the HLA class I molecule and its 

expression on the cell surface. A previously established loss of TAP-1 protein in 

HPV infected cells (Cromme et al., 1994, Vambutas et al., 2000) was revised 

(Vambutas et al., 2001).  
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It is theoretically conceivable that the down-regulation of HLA class I by 16E7 in 

SiHa cells is exhaustive. This might explain the inability of GFP-16E5 to achieve 

further down-regulation (Figure 5.1). However, the HCMV US6 protein could 

mediate a further reduction of HLA class I cell surface expression by 23% (± 

8.8) (Figure 5.1C). US6 deprives TAP from its energy source to prevent the 

correct assembly and cell surface presentation of HLA class I (Ahn et al., 1997, 

Dugan and Hewitt, 2008, Hewitt et al., 2001, Kyritsis et al., 2001). This shows 

that the HLA class I down-regulation in SiHa cells is not exhaustive and that it 

should therefore be possible to achieve the HLA class I cell surface down-

regulation by exogenously expressing 16E5. 

 

Preliminary experiments with exogenous GFP-16E5 in HEK293T and Huh7 

cells also did not induce a down-regulation of HLA class I molecules from the 

cell surface (data not shown). The inability of GFP-16E5 to down-regulate HLA 

class I cell surface levels is therefore not obscured by the 16E7 protein or 

insufficient amounts of calnexin in SiHa cells but is cell line independent. 

 

An interesting observation was made when overexpressing 16E7 in U-2 OS 

cells (Bottley et al., 2008). The cell surface levels of HLA class I were 

decreasing over time with the first effect being recorded after 24 h. The same 

research group observed the up-regulation of HLA class I 72 h post-transfection 

with 16E7 specific siRNA. Thus, at least for 16E7, there appears to be a certain 

amount of time (~24h) required to be able to observe the HLA class I down-

regulation. Gruener and colleagues expressed the GFP-16E5 fusion protein 20h 

prior to analysis by FACS (Gruener et al., 2007). However, due to high 

cytotoxicity of GFP-16E5, the transfected cells had to be analysed 16h post-

transfection in this study. The detrimental effect of exogenous 16E5 for cell 

viability was previously observed (Auvinen et al., 2004). It is theoretically 

possible that a greater effect on HLA class I cell surface expression becomes 

obvious with increasing duration of expression. This effect was observed for 

GFP-US6 which showed a more pronounced decrease of cell surface HLA 

class I levels 48 h post-transfection (data not shown). 
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To circumvent the high cytotoxicity of GFP-16E5, the GFP fusions of other PV 

E5 proteins (4.2.5: HPV2a, 6b, 11, 18, 31, BPV1 E5) can be investigated in this 

FACS-based assay since the effect on HLA/MHC class I is conserved amongst 

these E5 proteins (5.1). It is also conceivable to compare HLA class I cell 

surface levels in HFK HPV18 WT and E5 KO cell lines (3.2.2).  

 

5.3.1.2. GFP-16E5 does not down-regulate exogenous HLA-A2 class I 

molecules in SiHa cells  

As discussed above, the approach to verify the down-regulation of HLA class I 

with the W6/32 antibody in SiHa cells was not successful (5.3.1.1). The W6/32 

antibody recognises HLA-A, B and C types. It is theoretically possible that 16E5 

induces the down-regulation of one type in this experiment but the effect is 

masked by the remaining, unaffected HLA class I molecules. It was therefore 

logical to investigate the effect of GFP-16E5 on one specific HLA class I type. 

The HLA-A2 type was previously confirmed to be down-regulated by 16E5 

(Campo et al., 2010). This research group used a heterologous system where 

HA tagged 16E5 and untagged HLA-A2 HC were stably expressed in mouse 

mastocytoma cells. The down-regulation mediated by HA-16E5 was 

successfully demonstrated by FACS-based analysis. 

The experimental system employed in this study used transient overexpression 

of GFP-16E5 and untagged HLA-A2 in SiHa cells. Very importantly, exogenous 

HLA-A2 was expressed from a HCMV immediate-early promoter in these cells. 

HPV16 E7 only affects endogenous HLA class I promoters (Georgopoulos et 

al., 2000, Li et al., 2006, Li et al., 2009) so a potential exhaustive down-

regulation of HLA-A2 by the endogenous 16E7 protein of SiHa cells could be 

confidently excluded (5.3.1.1).  

A similar expression system was applied to investigate the effect of GFP-US6 

on this HLA type resulting in the understanding that an effective down-

regulation is not achieved (Dugan and Hewitt, 2009). HCMV US6 could 

therefore not be employed as a positive control in this assay. However, the 

increased recognition of the exogenous HLA-A2 by BB7.2 confirmed that the 

overexpression was successful (Figure 5.2). Possible positive controls for the 



226 

 

down-regulation could be the HCMV proteins US2 and US11 which are known 

to target HLA-A2 for degradation (Gewurz et al., 2001, Schust et al., 1998).  

Despite the previously confirmed down-regulation of HLA-A2 by 16E5 (Campo 

et al., 2010) and the verification of the assay (Dugan and Hewitt, 2009), in our 

hands, GFP-16E5 caused an up-regulation of HLA-A2 cell surface levels 

(Figure 5.2). Compared to the GFP and GFP + HLA-A2 controls, the GFP-16E5 

+ HLA-A2 samples had very few GFP-16 positive cells that did not express 

HLA-A2. It is possible that this is indicative of an over-expression artefact. It is 

conceivable that the expression of HLA-A2 is augmented by co-expression with 

GFP-16E5 compared to GFP. Indeed, Campo and colleagues specifically 

assessed the HA-16E5 and HLA-A2 expression levels by Western blot to 

exclude any variations in the overall amount of HLA-A2. An increase in total 

HLA-A2 could be responsible for the cell surface up-regulation seen in our GFP-

16E5 + HLA-A2 cell populations. In contrast, it was previously observed that the 

transient co-expression of proteins leads to a decrease of the amounts of both 

proteins (4.3.1 and Figure A. 4). An aliquot of the cell populations investigated 

by FACS could be analysed for the total amount of HLA-A2 protein by Western 

blot to investigate the effect further.  

In this assay (5.2.1.2), the cell populations were investigated by FACS only 16h 

post-transfection due to the high cytotoxicity of the GFP-16E5 overexpression 

(5.3.1.1). To avoid cytotoxic effects of exogenous GFP-16E5, the HFK HPV18 

WT and E5 KO cell lines (3.2.2) might be used in this assay. This requires 

previous determination of their HLA-A2 cell surface expression. If these cells 

are HLA-A2 negative, exogenous HLA-A2 has to be introduced to be able to 

perform this assay.  

 

5.3.2. YIPF4 is not involved in HLA class I cell surface regulation 

To the best of your knowledge, this is the first study that determined the half-life 

of the YIPF4 protein or indeed any protein from the YIP1 family. This was 

achieved by incubation of U-2 OS cells, which are known to express 

endogenous YIPF4 (Figure 3.1), with the translational elongation inhibitor 

cycloheximide. After ~ 44h, half of the YIPF4 protein was degraded. HeLa cells 

expressing exogenous YIPF4 were previously treated with cycloheximide, but 



227 

 

only for 120 min to determine its natural cellular localisation (Shakoori et al., 

2003). GFP-16E5 has a half-life of ~2 h (Dr Andrew Macdonald - personal 

communication) so it would be very interesting to observe whether the 

interaction with the much shorter lived E5 proteins has an effect on the YIPF4 

half-life. The premature degradation of YIPF4 could contribute to the function of 

the E5/YIPF4 complex. An Initial experiment observing the half-life of YIPF4 in 

GFP-16E5 expressing cells did not succeed (data not shown). Alternatively, the 

incubation of HFK HPV18 WT and E5 KO cells with cycloheximide would allow 

a comparison of the YIPF4 half-life with and without the E5 interaction.  

 

In this study, YIPF4 protein levels were successfully knocked down with 

commercial siRNA (Figure 5.4). Previously, commercial shRNA constructs with 

a GFP reporter gene were employed but a knock down was neither achieved on 

transcript nor on protein level (data not shown). The GFP reporter gene would 

have offered the advantage of cell sorting. This way only cells successfully 

transfected with the shRNA could have been analysed. The siRNA approach 

did not allow for such discrimination between transfected and untransfected 

cells. However, the analysis of YIPF4 protein levels in the transfected cell 

population confirmed an overall successful knock down (Figure 5.5).  

The initial application of siRNA4 showed a ~97% knock down of YIPF4 after 40 

h in SiHa cells (Figure 5.4). According to the half-life of YIPF4 (~44h) 

determined in U-2 OS cells (Figure 5.3), this knock down appears too efficient. 

It is possible that the half-life varies in different cell lines. Later applications in 

SiHa cells, however, showed an average down-regulation of 60% (Figure 5.5) 

which is in agreement with the YIPF4 half-life of ~ 44h.  

 

A siRNA mediated knock down of YIPF4 was achieved previously (Tanimoto et 

al., 2011). Their siRNA targeted a different sequence (bp 589 – 607) of the 

hydrophilic N-terminus than the siRNA4 used in this study (bp 503 - 523) 

(Figure 5.4A). With their siRNA, a knock down of ~ 80% was accomplished 

(Tanimoto et al., 2011). Notably, the YIPF4 specific siRNA also significantly 

reduced the levels of YIPF3 within the cell. It was not conclusively established 

whether this was due to cross reaction of the siRNA or instability of the YIPF3 

protein due to lack of its binding partner YIPF4. The cross reactivity of the 
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siRNA4 used in this study with YIPF3 or any other YIP1 family protein was not 

directly investigated. But in the BLASTN search, the siRNA4 sequence 

exclusively aligned to the YIPF4 sequence which makes an off target effect on 

other cellular proteins unlikely (5.2.2.2).  

Surprisingly, the siRNA NC increased the amount of YIPF4 within the cells of 

sample set 2 and 3 (Figure 5.5). The elevated amount of YIPF4 within the cells 

did not have a significant effect on the HLA class I cell surface levels (Figure 

5.6). How the siRNA NC increased the YIPF4 protein levels was not 

investigated further. 

 

The almost complete depletion of YIPF4 in HeLa cells caused the fragmentation 

of the Golgi (Tanimoto et al., 2011). This phenotype was not examined in this 

study but could easily be achieved by immuno-fluorescent staining with the 

trans-Golgi network marker TGN46.  

This fragmentation of the Golgi, however, does not affect its functions in protein 

transport and post-translational modification (Tanimoto et al., 2011). This was 

also acknowledged in this study because the knock down of YIPF4 did not 

appear to prevent the trafficking of HLA class I molecules to the cell surface 

(Figure 5.6). However, further experiments are needed to confirm this 

observation. It is still possible that the knock down of YIPF4 is compensated for 

by other members of the YIP1 protein family or by un-related proteins with 

redundant functions. YIPF4 might also be responsible for the trafficking of 

certain HLA class I types only. In this case the effect could have been 

concealed by the usage of the W6/32 antibody which recognises a wide variety 

of HLA class I types. It is also conceivable that YIPF4 regulates the trafficking of 

HLA class I types that are not endogenously expressed in SiHa cells, like HLA-

A2 (Schoell et al., 1999). In these cases the experiment here would depict a 

false negative result.  

 

Future experiments could target the issue of a potential concealed effect of 

YIPF4 in HLA class I trafficking. An investigation of the involvement of YIPF4 in 

other E5 affected trafficking pathways like HLA class II (Zhang et al., 2003), 

CD1d (Miura et al., 2010), EGF-R (Straight et al., 1993) or caveolin-1 and  

ganglioside GM1 (Suprynowicz et al., 2008) might be worthwhile.  
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5.3.3. Determination of cellular binding partners of YIPF4 

The analysis of single pathways to determine the role of YIPF4 not only in the 

E5/YIPF4 complex but also in its natural cellular environment is not efficient. We 

therefore employed a strategy that aimed to identify all cellular binding partners 

of YIPF4. To the best of your knowledge, this is the first holistic approach to 

understand the function of YIPF4 as a representative for other members of the 

YIP1 family. 

 

The IP of exogenously expressed GFP-YIPF4 fusion protein with the GFP-

TRAP® system was chosen to determine the YIPF4 interactome (Figure 5.7). 

The utilisation of GFP fusion proteins for this sort of application is routinely 

performed because of several advantages (Trinkle-Mulcahy et al., 2008). The 

GFP Camelidae HC antibody used for the IP binds with very high affinity to the 

GFP tag. It is therefore very much suitable for this application and outperformed 

a monoclonal GFP antibody in a direct comparison. Furthermore, stable isotope 

labelling with amino acids in cell culture (SILAC) and photobleaching 

experiments revealed that free GFP does not show great interaction with 

cellular proteins. Thus, despite its size, it is unproblematic to use as a protein 

tag for pull down.  

In addition, the GFP-YIPF4 fusion protein achieved higher expression levels 

than FLAG-YIPF4-HA (data not shown) which were meant to ensure proper 

identification by mass spectrometry. Compared to free GFP expression, 

however, the GFP-YIPF4 fusion protein expressed markedly less (Figure 5.7). 

This is in accordance with the observation made with the GFP-16E5 fusion 

protein which expressed significantly lower than free GFP (Figure 5.1A). The 

GFP-US6 fusion protein, however, expressed to similar extends than free GFP 

(Figure 5.1A). Why certain GFP-fusion proteins express less efficiently than free 

GFP was not established. 

 

The use of endogenous YIPF4 for this experiment was not considered to 

produce more informative results than the overexpression system. As 

mentioned above, the GFP Camelidae HC antibody binds with high affinity and 

specificity and is widely used for proteomics analysis. The affinity and especially 
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the specificity of the YIPF4 antibody is less well characterised and would have 

added uncertainty to the results obtained. Co-IP experiments with endogenous 

YIPF4 revealed non-specific binding of YIPF4 to the bead matrix (Figure 4.1B). 

This would have complicated the identification of specific interaction partners.  

 

Magnetic beads were chosen for this experiment. In a comparison with 

sepharose/agarose beads by SILAC, they showed the least non-specific binding 

of nuclear proteins (Trinkle-Mulcahy et al., 2008). The exclusion of nuclear 

proteins was aspired to reduce the amount of contaminants. An interaction of 

YIPF4 with nuclear proteins is unlikely, because it was firmly established to 

reside at the Golgi (Figure 3.4) (Tanimoto et al., 2011). Despite the choice of 

magnetic dynabeads, the majority of proteins identified localised to the nucleus 

(5.2.3.1 and Table A. 7). This was clearly in contrast to expectations and does 

not agree with the cellular localisation of YIPF4. The LFQ approach (Figure 5.7) 

was repeated with the cytoplasmic fraction of cells (data not shown) to eliminate 

these possible contaminants. This additional handling step during the 

fractionation procedure, however, introduced great sample-to-sample variations 

(see below) that made a confident analysis impossible. 

Another feasible approach to eliminate these possible contaminants is the 

modification of the IP. In this study, the IP was performed o/n but an incubation 

for 30 min was shown to be sufficient to precipitate the desired proteins and 

minimise the level of contaminants (Trinkle-Mulcahy et al., 2008). Also, the 

stringency of washed could be modified to achieve this purpose.  

 

The LFQ approach was employed in this study to confidently identify YIPF4 

cellular binding partners. Indeed, the peptide sequence coverage by LFQ is 

significantly better than by chemically labelled samples (Patel et al., 2009). 

However, in LFQ, in contrast to label-based methods, the samples are treated 

and analysed separately. As mentioned above, this can induce great variations 

between the samples. For this reason, it is highly recommended to perform 

multiple technical and biological replicas to allow the statistical evaluation of 

potential binding partners (ten Have et al., 2011). In this study, the LFQ was 

performed for one GFP-YIPF4 and one GFP control sample and can therefore 

be regarded as a preliminary determination of the YIPF4 interactome.   
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5.3.3.1. Classification of YIPF4 binding proteins 

The list of proteins from the preliminary YIPF4 interactome was filtered under 

certain criteria to increase the confidence in the identified proteins (5.2.3.1). 

This resulted in a list of 102 proteins that was annotated with the PANTHER 

classification system (Mi et al., 2013) (Table 5.1, Table A. 7, Table A. 8).  

 

Surprisingly, the only previously known interaction partner of YIPF4, YIPF3 

(Tanimoto et al., 2011), was not amongst these proteins. The experiment was 

carried out in HEK293T cells, but until now, YIPF3 expression was only 

confirmed in HeLa cells, normal rat kidney cells, rat liver Golgi membranes 

(Tanimoto et al., 2011) and nucleated hematopoietic cells (Prost et al., 2002). 

However, it is likely that its expression is similarly conserved as for YIPF4 

(Figure 3.1).  

The interaction sites of YIPF4 and YIPF3 were never mapped, so it possible 

that the GFP tag of the YIPF4 fusion protein sterically hinders the binding. The 

analysis of the eluate on the Western blot (Figure 5.7) with a specific YIPF3 

antibody (Tanimoto et al., 2011) might help to elucidate this issue.  

Also, no other YIP1 family proteins were identified in the eluate which is against 

expectations (1.8). The additional components in the YIPF4/YIPF3 protein 

complexes (520 kDa, 450 kDa, 260 kDa, 220 kDa) (Tanimoto et al., 2011) could 

therefore be un-related proteins.  

 

Endogenous YIPF4 was also not amongst the proposed YIPF4 binding 

partners. This implies that it does not bind to exogenous YIPF4 protein. It is in 

accordance with the fact that endogenous YIPF4 does not form dimers while 

exogenously expressed YIPF4 self-associates (Figure 3.1 and Figure 3.10).  

The overexpression of myc-YIPF4 rigorously decreased the amounts of 

endogenous YIPF4 (Figure 3.1). So, the down-regulation of endogenous YIPF4 

in GFP-YIPF4 expressing cells might also be the reason for not detecting it 

amongst the YIPF4 binding partners.  

As mentioned above (5.2.3.1, 5.3.3), a great proportion of proteins identified in 

the eluate (Figure 5.7) are nuclear proteins (Table A. 7), which are likely to be 

contaminants. Certain groups of proteins are known to ‘reliably’ interact with the 
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bead matrix in this type of experiment (Boulon et al., 2010, Trinkle-Mulcahy et 

al., 2008). This ‘bead proteome’ mainly consists of structural and motility 

proteins, histones, DEAD box helicases, heterogeneous nuclear 

ribonucleoproteins proteins, eukaryotic elongation/initiation factors, heat shock 

proteins and ribosomal proteins. And indeed, the list of potential YIPF4 binding 

partners comprises many of these proteins (Table A. 8). It is therefore possible 

that these are part of the bead proteome and thus contaminants of this sample. 

Concluding from this, YIPF4 would not be mainly involved in the metabolic 

processes including RNA binding, splicing and translation or perform structural 

molecule activity by binding to ribosomes (Figure 5.8).  

The repetition of the experiment with sufficient technical and biological samples 

will help to distinguish between bead proteome and YIPF4 interactome. In 

addition to that, the list of protein IDs can be screened against the protein 

frequency library (Boulon et al., 2010) which evaluates the likelihood of any 

identified protein to be a contaminant based on a huge database of similar 

experiments.  

 

In this preliminary approach (Figure 5.7), a number of interesting proteins were 

identified amongst the potential YIPF4 binding partners that were not obviously 

part of the bead proteome (Table 5.1). These could either interact with YIPF4 

directly or be part of the protein complexes (520kDa, 450kDa, 260kDa, 220 

kDa) identified for YIPF4 (Tanimoto et al., 2011).  

 

The protein with the highest enrichment factor (36.84) was α-2-HS-glycoprotein 

(also fetuin-A) which is secreted from the cell and plays a role in the 

metabolism, central nervous system, cardiovascular system and bone 

metabolism and mineralisation (Mori et al., 2011). It is intriguing to speculate 

that the exocytosis of α-2-HS-glycoprotein is mediated by YIPF4. However, α-2-

HS-glycoprotein is predominantly synthesised in the liver and maybe 

osteoblasts so the expression in the kidney cell line (HEK293T) used for the 

LFQ experiment might be an artefact of cell culture. A similar observation was 

made with the glycogen phosphorylase that is enriched by 3.71 fold in the GFP-

YIPF4 sample. It is an enzyme of the carbohydrate metabolism in the liver 

(Ekstrom et al., 2002). Why these proteins are expressed in the HEK293T cell 
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line used for this experiment and whether the interaction with YIPF4 is genuine 

remains to be determined.  

 

The protein 14-3-3ε was enriched in the GFP-YIPF4 sample by 13.82 fold. It is 

one of the seven members of the highly conserved 14-3-3 protein family 

(Freeman and Morrison, 2011). These proteins bind specifically to 

phosphoserines/phosphothreonines of their target proteins and alter their 

conformation, cellular binding partners and cellular localisation. 14-3-3 proteins 

have been shown to play roles in protein trafficking, regulation of the cell cycle, 

proliferation and apoptosis. Interestingly, the 14-3-3σ and 14-3-3ζ proteins play 

roles in carcinogenesis and 14-3-3ζ was shown to interact with the E6 

oncoprotein of high-risk HPV types (Boon and Banks, 2013). It can be 

speculated that E5 exerts its oncogenic properties in a 16E5/YIPF4/14-3-3ε 

complex formation. Notably, the 14-3-3 proteins predominantly bind to 

phosphorylated proteins and large scale mass spectrometry analyses indeed 

suggest that the tyrosines at positions 10 and 60 of YIPF4 are phosphorylated 

(Hornbeck et al., 2004). Since the 14-3-3 protein family preferentially binds 

phosphoserines and phosphothreonines, the interaction with 14-3-3ε is 

therefore likely to be indirect and mediated by another protein within the 

complex.  

 

The Bcl-2-associated transcription factor 1 is enriched by 7.55 fold in the GFP-

YIPF4 sample. It is an interesting candidate for a YIPF4 binding partner when 

this is in complex with E5. 16E5 was shown to co-localise with the anti-apoptotic 

protein Bcl-2 in cellular membranes (Auvinen et al., 2004), but whether a 

functional 16E5/Bcl-2 protein complex is formed remains to be investigated.  

 

The guanine nucleotide-binding protein subunit β-2-like 1 is part of a myriad of 

signalling complexes within the cell (Gibson, 2012) and is enriched by 6.29 fold 

in the GFP-YIPF4 sample in this analysis. However, it also forms part of the 

ribosome complex and is therefore at risk of being part of the bead proteome 

(Boulon et al., 2010, Trinkle-Mulcahy et al., 2008).  
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A very interesting binding candidate for YIPF4 is the Na+/K+-transporting 

ATPase subunit α-1 which is enriched by 4.93 fold. This is the catalytic subunit 

of an enzyme that hydrolyses ATP to promote the exchange of Na+ and K+ ions 

across the plasma membrane (Blanco, 2005). It is indeed intriguing to speculate 

that in HPV infected cells, YIPF4 interacts with the viroporin 16E5 instead of/in 

addition to the Na+/K+-transporting ATPase to manage cellular ion flux in favour 

of the virus.  

 

The DnaJ homolog subfamily A member 2 (also called cell cycle progression 

restoration gene 3 protein) was enriched in the GFP-YIPF4 sample by 1.78 fold. 

It is known to positively regulate cell proliferation (Edwards et al., 1997) and is 

therefore a conceivable YIPF4 binding candidate in the E5/YIPF4 complex to 

promote cell transformation upon HPV infection. However, DnaJ homolog 

subfamily A member 2 also serves as a chaperone for heat shock cognate 70 

(Terada and Mori, 2000) which was identified as potential bead proteome 

(Table A. 8). It is therefore likely that DnaJ homolog subfamily A member 2 is 

part of the bead proteome rather than a genuine YIPF4 interacting protein.  

 

With regard to other YIP1 family members, the coatomer subunit α (enrichment 

factor 1.61), tubulin α-1A chain (3.21), actin (1.75), plastin-3 (3.86) and T-

complex protein 1 subunit θ (2.78) could be involved in YIPF4 mediated cellular 

trafficking processes. The coatomer subunit α is part of the COPI complex that 

mediates retrograde vesicle trafficking of the early exocytic pathway (Langer et 

al., 2008). The paralogues of YIPF4 in mammals, YIF1A and YIF1B, are 

thought to be involved in COPI-dependent trafficking (1.8.3.5 and 1.8.3.6) 

making coatomer subunit α a likely YIPF4 binding partner. The first precise 

model of cellular trafficking by a YIP1 family member was established for YIF1B 

(Al Awabdh et al., 2012). YIF1B facilitates the formation of a complex that 

moves the serotonin receptor 5-HT1AR through the cell on the tubulin 

cytoskeleton (Figure 1.11). Here we identified the cytoskeleton components 

tubulin α-1A chain and actin as a potential part of a YIPF4 protein complex as 

well as the actin associated protein plastin-3 (Oprea et al., 2008) and the T-

complex protein 1 subunit θ that might play a key role in actin and tubulin 



235 

 

folding (Kubota et al., 1994). It is therefore conceivable that YIPF4 mediates 

intracellular trafficking in a similar fashion to its paralogue YIF1B. 

 

The confirmation of these and other proteins from the preliminary interactome 

list (Table 5.1, Table A. 7, Table A. 8) as YIPF4 binding partners needs to be 

addressed to elucidate the cellular roles of YIPF4. This will enable the 

identification of the function of the E5/YIPF4 complex during PV infection. 

 



236 

 

Chapter 6.  Summary and conclusion 

The work in this thesis was based on observations made in a Y2H screen, 

LUMIER assay and TAP-MS analysis which suggested YIPF4 as a novel 

cellular interaction partner of 16E5. The YIPF4 protein was subject to intense 

investigation to confirm it as a likely in vivo binding partner of PV E5 proteins.  

 

This study demonstrated the expression of YIPF4 protein in a variety of human, 

monkey and hamster established cell lines and cell lines derived from primary 

human keratinocytes. To the best of our knowledge, we provided the first 

indication of a YIPF4 protein in hamster cells. Due to its ubiquitous expression 

and high conservation, YIPF4 might be a housekeeping protein.  

 

It was observed that endogenous YIPF4 localises to the trans-Golgi but a partial 

localisation to the cis-Golgi, as published in the literature, is not excluded. The 

overexpression of epitope tagged YIPF4 caused dimerisation and accumulation 

in the ER and perinuclear region. 

 

In this study experimental evidence for a 3 TMD topology model of YIPF4 was 

provided which refuted the existing computational model suggesting 5 TMDs. 

This depicts the first experiment-based topology model for any of the YIP1 

family members and might thus serve as a representative for this protein family.  

 

Notably, YIPF4 was found to be expressed in cells susceptible and permissive 

to HPV infection and in cells carrying HPV16 and HPV18 genomes. The 

presence in HPV18 positive organotypic raft culture and HPV16 positive CIN1 

and CIN3 pathological specimens was confirmed. These findings imply that 

YIPF4 could indeed be an in vivo binding partner of E5 proteins. 

 

YIPF4 protein levels were shown to decrease when HFKs differentiate but the 

expression was rescued in differentiating HPV18 positive HFKs. This effect was 

independent of 18E5. It is therefore conceivable that YIPF4 is required for the 
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productive stage of the viral life-cycle. The expression might be regulated by 

18E2 because several potential E2BS were identified in the YIPF4 ORF. 

 

Co-IP experiments confirmed that not only overexpressed but also endogenous 

YIPF4 interacts with the E5 oncoprotein of HPV16, which is in agreement with 

the observations made in the Y2H screen and LUMIER assay. This interaction 

was mediated by the 2nd TMD of 16E5 and amino acids 118 – 138 of YIPF4. 

The other HPV16 oncoproteins E6 and E7 did not interact with YIPF4, which 

stresses the specificity of this interaction with the E5 protein.  

 

A major finding was that E5 proteins representing the HPV E5 families E5α, 

E5β, E5γ and the ungulate BPV1 E5 all interact with human YIPF4. The 

interaction is thus likely to be conserved for E5 proteins of further high-risk, low-

risk and cutaneous HPV types and maybe other animal PV types. This implies 

that the E5/YIPF4 complex plays an important role for the virus presumably 

during the life-cycle or immune evasion. A co-localisation between the E5 

proteins and YIPF4 was not observed but this is likely to be an artefact of the 

overexpression of epitope tagged E5 employed due to lack of specific detection 

reagents for 16E5.  

 

It is established in the literature that E5 proteins down-regulate the cell surface 

expression of HLA/MHC class I molecules to aid viral immune evasion. Also 

YIPF4 is likely to modify exocytic and endocytic cellular trafficking concluding 

from other YIP1 family members. Thus, an involvement of the 16E5/YIPF4 

complex in trafficking of HLA class I molecules was investigated with the 

unexpected finding that neither expression of 16E5 nor knock down of YIPF4 

abrogated cell surface expression of HLA class I specifically including the HLA-

A2 type. According to these findings, the 16E5/YIPF4 complex is not involved in 

regulation of HLA class I cell surface expression to mediate viral immune 

evasion.  
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In conclusion, the interaction of E5 proteins with the YIP1 family protein YIPF4 

is highly likely to be crucial for the virus since it is conserved amongst a 

representative panel of PV E5 proteins. The E5/YIPF4 complex might alter the 

trafficking of cellular proteins to promote the viral life-cycle or immune evasion. 

Further research is needed to identify this role and a first approach was made to 

determine the YIPF4 cellular interactome. The establishment of the functions of 

YIPF4 within the cell will facilitate the determination of the role of the E5/YIPF4 

complex. Exploiting the interaction of E5 and YIPF4 as a drug target could help 

to combat the broad spectrum of PV related diseases. 
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Appendix 

Table A. 1 Sub-cloning E5 genes from various PV types and truncation mutants of 16E5. 

Restriction enzymes are indicated and their recognition sites are highlighted by underlining in 

the forward and reverse primer sequences. The pcDNA-Neo-HA-HPV16E5 plasmids encoding 

for the 16E5 truncation mutants were kindly provided by Prof M. Saveria Campo, University of 

Glasgow, UK.  

name and isolate 
denotation 

template destination 
vector 

fwd primer  
5' – 3'  

rev primer 
5' - 3' 

ann. 
temp 

elon. 
time 

peGFP-C2-
HPV16E5 c.o. 

pBABE-
puro-
FLAG-
HPV16E
5 c.o.  

peGFP-C2 EcoRI 

ATATATGAATT

CACAAATCTGG

ATACTGCATCC

ACAACACTGCT

GG 

BamHI 

AATTGGATCCT

TATGTAATCAG

AAAGCGTGCAT

GTGTATGGATC

AG 

65°C 3 sec 

pmCherry-C2-
FLAG-HPV16E5 

pSG5-
FLAG-
HPV16E
5 

pmCherry-
C2 

EcoRI 

ATATATGAATT

CGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GATAACAAATC

TGGATACT 

BamHI 

AATTGGATCCT

TATGTAATCAG

AAAGCGTGCAT

GTGTATGGAT 

65°C 3 sec 

peGFP-C2-
HPV2aE5 
(isolate CN-HB1) 

n/doc. peGFP-C2 EcoRI 
ATATATGAATT

CTACCCTGTTG

TGTATAAGGGA

TCTGAGGGAAC

ATATCCTGTGG 

BamHI 
AATTGGATCCT

TAGGTGTGGTT

TAACAAACGGA

CATAAAACATC

AACAATAAAAA

GGCGA 

54°C 3 sec 

peGFP-C2-
HPV6bE5a 
 

n/doc. peGFP-C2 EcoRI 
ATATATGAATT

CGAAGTGGTGC

CTGTACAAATA

GCTGCAGGAAC

AACCAGCACAT

TCATACTGCC 

BamHI 
AATTGGATCCT

CACTGCTGTGT

GGTCACAATAT

AGTAGTGGATA

TACAGTGCGGG

ACAGT 

54°C 3 sec 

peGFP-C2-
HPV11E5a 
(isolate GUMC-
AJ-Lung) 
 

n/doc. peGFP-C2 EcoRI 
ATATATGAATT

CGAGGTAGTGC

TGTACAAATTG

CTGCAGCAAAC 

BamHI 
AATTGGATCCT

TATTGTTGCGT

TTGCACAATGT

ATATGTGTATA

TAAAAGGCAGG

AAAATAGCA 

54°C 3 sec 

peGFP-C2-
HPV18E5 
(isolate CU16) 

n/doc. peGFP-C2 EcoRI 
ATATATGAATT

CTTATCACTTA

TTTTTTTATTT

TGCTTTTGTGT

ATGCATGTATG

TGTGCTGCC 

BamHI 
AATTGGATCCT

TACTGTAAAGA

CAATATAGCAT

GTATATGCAAT

AGTAACATGGG

GCAATAAAAA 

54°C 3 sec 
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name and isolate 
denotation 

template destination 
vector 

fwd primer  
5' – 3'  

rev primer 
5' - 3' 

ann. 
temp 

elon. 
time 

peGFP-C1-
HPV31E5 

n/doc peGFP-C1 EcoRI 

ATATTTGAATT

CAATTGAACTA

AATATTTCTAC

AGTAAGCATTG

TGCTATGC 

BamHI 

AATTGGATCCT

TACTGTTGACT

TAAAAAAGATG

CATGTGTATG 

65°C 3 sec 

peGFP-C1-
BPV1E5 

pcDNA3.
1 
BPV1E5 

peGFP-C1 EcoRI 

ATATTTGAATT

CACCAAATCTA

TGGTTTCTATT

GTTCTTGGGAC

TAGTTGCTGC 

BamHI 

AATTGGATCCT

TAAAAGGGCAG

ACCTGTACAGG

AGCACTC 

65°C 3 sec 

peGFP-C1-
HPV16E5R79 

pcDNA-
Neo-HA-
HPV16E
5R79 

peGFP-C1 EcoRI 
ATATTTGAATT

CAACAAATC T

TGATACTGC A

TCCACAACA T

TACTGGCGT G

C 

BamHI 
AATTGGATCCT

TATGTAATT A

AAAATTATG C

ATGTGTATG 

65°C 3 sec 

peGFP-C1-
HPV16E5A54 

pcDNA-
Neo-HA-
HPV16E
5A54 

peGFP-C1 EcoRI 
ATATTTGAATT

CAACAAATCTT

GATACTGCATC

CACAACATTAC

TGGCGTGC 

BamHI 

AATTGGATCCT

TATGTAATCAG

AAAGCGTGCAT

GTGTATGGAT 

65°C 3 sec 

peGFP-C1-
HPV16E5V36 

pcDNA-
Neo-HA-
HPV16E
5V36 

peGFP-C1 EcoRI 

ATATTTGAATT

CAACAAATCTT

GATACTGCATC

CACAACATTAC

TGGCGTGC 

BamHI 

AATTGGATCCT

TAAGACAAAAG

CAGCGGACG 

65°C 3 sec 

peGFP-C1-
HPV16E5R30 

pcDNA-
Neo-HA-
HPV16E
5R30 

peGFP-C1 EcoRI 

ATATTTGAATT

CAACAAATCTT

GATACTGCATC

CACAACATTAC

TGGCGTGC 

BamHI 

AATTGGATCCT

TATGTAATCAG

AAAGCGTGCAT

GTGTATGGAT 

65°C 3 sec 

peGFP-C1-
HPV16E5Del1 

pcDNA-
Neo-HA-
HPV16E
5Del1 

peGFP-C1 EcoRI 
ATATTTGAATT

CACCGCTGCTT

TTGTCTGTGTC 

BamHI 

AATTGGATCCT

TATGTAATCAG

AAAGCGTGCAT

GTGTATGGAT 

65°C 3 sec 

c.o. = codon optimised, n/doc. = not documented, ann. temp = annealing 

temperature, elon. time = elongation time  
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Table A. 2 Sub-cloning YIPF4 to attach an N-terminal GFP tag and an N-terminal FLAG and C-

terminal HA tag, respectively. Also, generation of six YIPF4 truncation mutants with the afore-

mentioned tags. Restriction enzymes are indicated and their recognition sites are highlighted by 

underlining in the forward and reverse primer sequences. The pCR-myc-YIPF4 plasmid was 

kindly provided by Prof Jürgen Haas, University of Edinburgh, UK.  

name template destinatio
n vector 

fwd primer  
5' – 3'  

rev primer 
5' - 3' 

ann. 
temp 

elon. 
time 

peGFP-C1-
YIPF4 V244 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGCAGCCTCC

GGGCCCG 

BamHI 

AATTGGATCCT

TACACACCAGT

ATATAACGAC 

53°C 7 sec 

peGFP-C1-
YIPF4 K223 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGCAGCCTCC

GGGCCCG 

BamHI 

AATTGGATCCT

TACTTTTTGGT

CTTGAATTCTT

CACCC 

53°C 7 sec 

peGFP-C1-
YIPF4 S195 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGCAGCCTCC

GGGCCCG 

BamHI 

AATTGGATCCT

TAAGACACCAC

TTCAAATGATC

CAACC 

53°C 7 sec 

peGFP-C1-
YIPF4 Q166 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGCAGCCTCC

GGGCCCG 

BamHI 

AATTGGATCCT

TATTGGCCATA

TGCAACTTCTC

CACC 

53°C 7 sec 

peGFP-C1-
YIPF4 S138 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGCAGCCTCC

GGGCCCG 

BamHI 

AATTGGATCCT

TATGAGACCAC

CCTAAACTGTC

C 

53°C 7 sec 

peGFP-C1-
YIPF4 G117 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGCAGCCTCC

GGGCCCG 

BamHI 

AATTGGATCCT

TAACCCCAAAA

GTCAGGATTGT

C 

53°C 7 sec 

peGFP-C1-
YIPF4 Del1-109 

pCR-myc-
YIPF4 

peGFP-C1 HindIII 

ATATATAAGCT

TCGAGAGACAA

TCCTGACTTTT

GGGG 

BamHI 

AATTGGATCCT

TACACACCAGT

ATATAACGAC 

53°C 7 sec 

pcDNA3.1+ 
FLAG-YIPF4-HA 
V244 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GCAGCCTCCGG

GCCCGCCCCCG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTACACA

CCAGTATATAA

CGACAAAAAAT

AAATG 

53°C 7 sec 

pcDNA3.1+ 
FLAG-YIPF4-HA 
K223 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GCAGCCTCCGG

GCCCGCCCCCG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTACTTT

TTGGTCTTGAA

TTCTTCACCC 

53°C 7 sec 
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name template destinatio
n vector 

fwd primer  
5' – 3'  

rev primer 
5' - 3' 

ann. 
temp 

elon. 
time 

pcDNA3.1+ 
FLAG-YIPF4-HA 
S195 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GCAGCCTCCGG

GCCCGCCCCCG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTAAGAC

ACCACTTCAAA

TGATCCAACC 

53°C 7 sec 

pcDNA3.1+ 
FLAG-YIPF4-HA 
Q166 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GCAGCCTCCGG

GCCCGCCCCCG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTATTGG

CCATATGCAAC

TTCTCCACC 

53°C 7 sec 

pcDNA3.1+ 
FLAG-YIPF4-HA 
S138 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GCAGCCTCCGG

GCCCGCCCCCG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTATGAG

ACCACCCTAAA

CTGTCC 

53°C 7 sec 

pcDNA3.1+ 
FLAG-YIPF4-HA 
G117 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GCAGCCTCCGG

GCCCGCCCCCG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTAACCC

CAAAAGTCAGG

ATTGTCTCTC 

53°C 7 sec 

pcDNA3.1+ 
FLAG-YIPF4-HA 
Del1-109 

pCR-myc-
YIPF4 

pcDNA3.1
+ 

HindIII 

ATATATAAGCT

TGCGGCCATGG

ATTACAAGGAT

GACGACGATAA

GAGAGACAATC

CTGACTTTTGG

GG 

BamHI 

AATTGGATCCT

TAAGCGTAGTC

TGGGACGTCGT

ATGGGTACACA

CCAGTATATAA

CGACAAAAAAT

AAATG 

53°C 7 sec 

ann. temp = annealing temperature, elon. time = elongation time  
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Table A. 3 YIPF4 protein sequences of different species. The NCBI reference IDs for the YIPF4 

proteins are indicated.   

protein accession gene organism 

NP_115688.1 YIPF4 H. sapiens 

XP_001106365.1 YIPF4 M. mulatta 

XP_532925.1 YIPF4 C. lupus 

XP_002691265.1 YIPF4 B. taurus 

NP_080693.2 Yipf4 M. musculus 

NP_001009712.1 Yipf4 R. norvegicus 

NP_001026229.1 YIPF4 G. gallus 

NP_998056.1 yipf4 D. rerio 

NP_001123056.1 CELE_Y60A3A.19 C. elegans 

 

Table A. 4 Primary antibodies used for detection of proteins on Western blots and by immuno-

chemistry.  

antibody manufacturer description immunogen size of 

target 

dilution 

WB 

dilution 

ICC/IHC 

α-beta tubulin EnoGene, USA  mouse 

monoclonal 

recombinant 
β-tubulin 
protein from 
bacteria 

50 

kDa 

1:1000 1:250 

α-E4 (HPV16, 

18, 31) 

Kindly provided 

by Dr Sally 

Roberts, 

University of 

Birmingham, UK 

mouse 

monoclonal 

not known n/a n/a 1:100 

α-FLAG Sigma, USA mouse 

monoclonal 

synthetic 
peptide 
DYKDDDDK 

n/a 1:5000 n/a 

α-FLAG EnoGene, USA rabbit 

polyclonal 

synthetic 
peptide 
DYKDDDDK 

n/a 1:5000 1:500 

α-GAPDH Abcam, UK mouse 

monoclonal 

rabbit muscle 

GAPDH 

36 

kDa 

1:20 

000 

n/a 

α-GFP Santa Cruz 

Biotech-

technology, 

USA 

mouse 

monoclonal 

 full-length 
GFP of 
Aequorea 
victoria origin 

37 

kDa 

1:1000 n/a 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=14150076&dopt=GenPept&term=14150076&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=109102591&dopt=GenPept&term=109102591&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=57098227&dopt=GenPept&term=57098227&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=297480203&dopt=GenPept&term=297480203&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=28076889&dopt=GenPept&term=28076889&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=57527589&dopt=GenPept&term=57527589&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=71895345&dopt=GenPept&term=71895345&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=47086257&dopt=GenPept&term=47086257&qty=1&linkbar=jsmenu2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=protein&list_uids=193209170&dopt=GenPept&term=193209170&qty=1&linkbar=jsmenu2
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antibody manufacturer description immunogen size of 

target 

dilution 

WB 

dilution 

ICC/IHC 

α-HA Sigma, USA mouse 

monoclonal 

amino acids 

98-106 of 

human 

Influenza virus 

hemagglutinin  

n/a 1:5000 1:500 

α-HPV18 E7 Abcam, UK mouse 

monoclonal 

recombinant 
full-length 
HPV18 E7 
protein 

12 

kDa 

1:250 n/a 

α-Lamin B1 Calbiochem, UK mouse 

monoclonal 

nuclear matrix 

from the 

human cervical 

cancer cell line 

ME-180 

68 

kDa 

1:1000 n/a 

α-

mannosidase 

II 

AbD serotec, 

USA 

rabbit 

polyclonal 

human 
mannosidase 
II 

135 

kDa 

n/a 1:250 

α-TGN46 kindly provided 

by Dr 

Sreenivasan 

Ponnambalam, 

University of 

Leeds, UK 

sheep (Towler et al., 
2000) 

46 

kDa 

1:250 1:250 

α-Transferrin 

receptor (TfR) 

Invitrogen, USA mouse 

monoclonal 

amino acids 3-
28 of human 
TfR 

95 

kDa 

1:2500 n/a 

α-YIPF4 Sigma, USA rabbit 

polyclonal 

amino acids 
12 - 105 of 
human YIPF4 

27.1 

kDa 

1:250 1:250 

WB = Western blot, ICC = immuno-cytochemistry, IHC = immuno-

histochemistry, α- = anti, n/a = not applicable  
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Table A. 5 Secondary antibodies conjugated with horseradish peroxidase used for Western blot 

analysis 

antibody manufacturer produced in  dilution 

α-mouse IgG (whole molecule) – peroxidase Sigma, USA goat 1:5000 

α-rabbit IgG (whole molecule) – peroxidase Sigma, USA goat 1:5000 

α-sheep IgG (whole molecule) – peroxidase Sigma, USA donkey 1:5000 

 

Table A. 6 Secondary antibodies conjugated with Alexa dyes used for immuno-histochemistry 

and immuno-cytochemistry 

antibody manufacturer dilution 

Alexa Fluor® 488 Goat Anti-Rabbit IgG Invitrogen, USA 1:500 

Alexa Fluor® 594 Goat Anti-Mouse IgG Invitrogen, USA 1:500 

Alexa Fluor® 488 Chicken Anti-Mouse IgG Invitrogen, USA 1:500 

Alexa Fluor® 594 Chicken Anti-Rabbit IgG Invitrogen, USA 1:500 

Alexa Fluor® 633 Goat Anti-Mouse IgG Invitrogen, USA 1:500 

Alexa Fluor® 633 Goat Anti-Rabbit IgG Invitrogen, USA 1:500 

Alexa Fluor® 633 Donkey Anti-Sheep IgG Invitrogen, USA 1:500 

 

6.1. Macro for PSC plug-in for ImageJ 

rename ("image"); 

run("Split Channels"); 

run("Merge Channels...", "red=[C3-image] green=[C2-image] blue=*None* gray=*None* 

create"); 

run("RGB Color"); 

run("Select All"); 

run("PSC Colocalization ", "please=25"); 

selectWindow("ImageJ selection mask (rectangular)"); 

close(); 

selectWindow("Composite (RGB)"); 

close(); 

selectWindow("Composite"); 

close(); 

selectWindow("C1-image"); 

close(); 

String.copy Results(); 
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Figure A. 1 Different subcellular localisations of the GFP-YIPF4 truncation mutants S138 and 

G117. SiHA cells were transfected with GFP fusion proteins of the YIPF4 truncation mutants 

S138 (A) and G117 (B). Cells were fixed and imaged with Zeiss LSM 700 confocal 

microscope. Upper panels show ER-like localisation and lower panels show distribution 

throughout the cell. Nuclei were stained with DAPI (blue). Scale bar = 20 µm  
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Figure A. 2 Multiple alignment and phylogeny of YIPF4 proteins from various species. A. 

Multiple alignment with ClustalW2 of YIPF4 proteins of various species. Black box indicates 

the potentially conserved binding region of 16E5. red = small and hydrophobic (including 

aromatic without Y), blue = acidic, magenta = basic- without H, green = hydroxyl, sulfhydryl, 

amine including G, * = single, fully conserved residue, : = conservation between groups of 

strongly similar properties, . = conservation between groups of weakly similar properties B. 

Phylogenetic tree showing the relationships of species based on their YIPF4 proteins. 
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Figure A. 3 MG132 treatment of cells transfected with GFP-YIPF4 truncation mutants. 

Plasmids encoding the GFP tagged YIPF4 truncation mutants S138, G117 and Del1-109 

were transfected into Huh7 cells. Sixteen hours post-transfection, cells were treated with the 

proteasome inhibitor MG132 (10 μM) for 6 h. Cells were lysed and analysed on a Western 

blot probing for the GFP tag.  
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Figure A. 4 Effects of co-transfections in HEK293 cells. A. HEK293 cells were co-transfected with different plasmids using PEI. GFP 

and GFP-16E5 expression were non-quantitatively analysed by observation with an epifluorescence microscope (Nikon Eclipse TS 

100). GFP-E5 expression is drastically reduced when co-transfected with myc-YIPF4. BF = bright field, FL = fluorescence B. The same 

HEK293 cells were lysed and a Western blot performed using antibodies against their GFP and myc tags. A general reduction in 

expression levels was seen in co-transfected samples, however, this effect is extreme in myc-YIPF4 and GFP-E5 co-expressing sample 

(lane 6). The GFP detected in lane 2 is overflow from lane 3.  ‘ /  ‘ = lysate of untransfected HEK293 cells. 
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Figure A. 5 GFP-16E5 interacts with the 16K subunit of the vacuolar H
+

 - ATPase. The GFP-

16E5 fusion protein and the myc epitope tagged 16K were expressed in HEK293T cells. 

Cells were lysed 24 h post-transfection and cell lysate adjusted to equal concentrations. The 

Co-IP was performed with GFP Camelidae HC antibody coupled to magnetic beads 

(schematic). Eluates were analysed on a Western blot which was probed for the protein tags 

with GFP and myc antibodies. Marker in kDa. 
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Table A. 7 List of YIPF4 potential interaction partners with nuclear and mitochondrial localisation. The protein annotations originate from the PANTHER 

classification system. Details about cellular localisations were derived from the UniProt database.  

gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

P62306 
small nuclear 

ribonucleoprotein 
F 

48.23 nucleus n/n(PTHR11021:SF0) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 

P31943 

hetero-geneous 
nuclear 

ribonucleoprotein 
H 

47.09 
nucleus, 

nucleoplasm 
RNA-binding protein 12 

(PTHR13976:SF5) 
structural constituent of 

ribosome 
nuclear mRNA splicing, 

via spliceosome 
ribosomal protein n/n 

Q07955 
serine/arginine-

rich splicing factor 
1 

40.68 

nucleus 
speckle, 

cytoplasm, 
shuttles 
between 

nucleus and 
cytoplasm 

splicing factor, arginine/serine-
rich1 (PTHR10548:SF10) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 

O75533 
splicing factor 3B 

subunit 1 
40.51 

nucleus 
speckle 

n/n 
(PTHR12097:SF0) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 

P84090 
enhancer of 
rudimentary 

homolog 
32.41 nucleus 

n/n 
(PTHR12373:SF0) 

transcription factor activity 
regulation of 

transcription from RNA 
polymerase II promoter 

transcription factor n/n 

Q9Y3B4 
pre-mRNA branch 

site protein p14 
20.74 nucleus 

n/n 
(PTHR22630:SF0) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 

Q8IXT5 
RNA-binding 
protein 12B 

18.64 n/n 
SWAN-related 

(PTHR13976:SF6) 
structural constituent of 

ribosome 
nuclear mRNA splicing, 

via spliceosome 
ribosomal protein n/n 

P35637 
RNA-binding 
protein FUS 

17.47 nucleus 
TATA-binding protein 
associated factor 2N 
(PTHR23238:SF5) 

RNA splicing factor 
activity, transesterification 
mechanism, transcription 

factor activity, mRNA 
binding 

neurological system, 
nuclear mRNA splicing, 

via spliceosome 

transcription factor, 
DNA-binding factor, 

mRNA splicing factor 

n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

O15042 

U2 snRNP-
associated SURP 
motif-containing 

protein 

16.92 nucleus 
n/n 

(PTHR23140:SF0) 
mRNA binding mRNA processing 

mRNA processing 
factor 

n/n 

Q9UQ35 
serine/arginine 
repetitive matrix 

protein 2 
16.74 

nucleus 
speckle 

n/n 
(PTHR32093:SF0) 

n/n n/n n/n n/n 

P08621 
U1 small nuclear 
ribonucleoprotein 

70 kDa 
15.97 

nucleus, 
nucleus 
speckle 

n/n 
(PTHR13952:SF3) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 

Q9NZI8 
insulin-like growth 
factor 2 mRNA-
binding protein 1 

15.3 

nucleus, 
cytoplasm, 

lamellipodium, 
dendrite, 

dendritic spine 

Insulin-like growth factor 2 
mRNA-binding protein 3 

(PTHR10288:SF92) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding, protein binding 

neurological system, 
intracellular/nuclear 
protein transport, 

induction of apoptosis, 
signal transduction, 

transcription from RNA 
polymerase II promoter, 
nuclear mRNA splicing, 
via spliceosome, protein 

metabolism 

mRNA splicing factor, 
ribonucleoprotein, 
enzyme modulator 

n/n 

Q92804 
TATA-binding 

protein-associated 
factor 2N 

13.52 

nucleus, 
cytoplasm, 

shuttles from 
the nucleus to 
the cytoplasm 

TATA-binding protein 
associated factor 2N 
(PTHR23238:SF5) 

RNA splicing factor 
activity, transesterification 
mechanism, transcription 

factor activity, mRNA 
binding 

neurological system, 
nuclear mRNA splicing, 

via spliceosome 

transcription factor, 
DNA-binding protein, 
mRNA splicing factor 

n/n 

Q6UX04 
peptidyl-prolyl cis-
trans isomerase 
CWC27 homolog 

12.29 
nucleus 
speckle 

peptidyl-prolyl cis-trans 
isomerase SDCCAG10 

(PTHR11071:SF33) 
isomerase activity 

immune system, 
intracellular/nuclear 

protein transport, protein 
folding 

isomerase n/n 

Q15459 
splicing factor 3A 

subunit 1 
11.02 nucleus 

n/n 
(PTHR15316:SF1) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

P09874 
poly [ADP-ribose] 

polymerase 1 
10.81 

nucleus, 
nucleolus, 
localises at 

sites of DNA 
damage 

n/n 
(PTHR15447:SF4) 

transferase activity, 
transferring glycosyl 

groups 

immune system, DNA 
repair, protein amino 

acid ADP-ribosylation, 
response to stress 

glycosyltransferase 

FAS 
signalling-

>Poly 
(ADP-
ribose) 

polymeras
e 

Q96PK6 
RNA-binding 

protein 14 
9.48 

nucleus, 
nucleolus 

n/n 
(PTHR24011:SF59) 

RNA splicing factor 
activity, transesterification 

mechanism, DNA 
replication origin binding, 

ssDNA binding, 
transcription factor activity, 

poly(A) RNA binding 

cell cycle, signal 
transduction, DNA 

replication, transcription 
from RNA polymerase II 

promoter, nuclear 
mRNA splicing, via 

spliceosome, mRNA 
polyadenylation, protein 

metabolism, 
ectoderm/nervous 

system development 

transcription factor, 
DNA-binding protein, 

mRNA 
polyadenylation factor, 
mRNA splicing factor, 

ribonucleoprotein 

n/n 

Q8IWX8 
calcium 

homeostasis ER 
protein 

8.79 
cytoplasm, 
perinuclear 
region, ER 

n/n 
(PTHR12323:SF0) 

RNA binding 
nuclear mRNA splicing, 

via spliceosome 
RNA binding protein n/n 

Q14978 
nucleolar and 
coiled-body 

phosphoprotein 1 
8.42 

nucleus, 
nucleolus, 
shuttles 
between 

nucleus to 
cytoplasm 

n/n 
(PTHR23216:SF0) 

n/n n/n n/n n/n 

Q15059 
bromodomain-

containing protein 
3 

7.89 nucleus 
Bromodomain-containing 

protein 3 (PTHR22880:SF20) 

acetyltransferase activity, 
nucleic acid/chromatin 

binding, 

transcription from RNA 
polymerase II promoter, 

establishment or 
maintenance of 

chromatin architecture 

acetyltransferase, 
chromatin/chromatin-

binding protein 

n/n 

Q6P2Q9 
pre-mRNA-
processing-

splicing factor 8 
7.47 

nucleus 
speckle 

n/n 
(PTHR11140:SF0) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

nuclear mRNA splicing, 
via spliceosome 

mRNA splicing factor n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

Q15233 

non-POU domain-
containing 

octamer-binding 
protein 

7.21 
nucleus, 
nucleolus 

NONO protein 
(PTHR23189:SF15) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

spermatogenesis, 
regulation of 

transcription from RNA 
polymerase II promoter, 
nuclear mRNA splicing, 

via spliceosome 

mRNA splicing factor n/n 

Q9UKV3 

apoptotic 
chromatin 

condensation 
inducer in the 

nucleus 

6.01 

nucleus, 
nucleus 
speckle, 

nucleoplasm 

n/n 
(PTHR14127:SF0) 

nucleic acid/chromatin 
binding 

apoptosis 
chromatin/chromatin-

binding protein 
n/n 

P23246 
splicing factor, 

proline- and 
glutamine-rich 

5.97 
nucleus 
matrix, 

cytoplasm 

PTB-associated splicing factor 
(PTHR23189:SF13) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding 

spermatogenesis, 
regulation of 

transcription from RNA 
polymerase II promoter 

mRNA splicing factor n/n 

Q9HCG8 
pre-mRNA-splicing 

factor CWC22 
homolog 

5.68 nucleus 
cell cycle control protein 

CWF22 (PTHR18034:SF3) 
nuclease activity, nucleic 

acid binding 

nuclear mRNA splicing, 
via spliceosome, 

translation 
nuclease n/n 

Q66PJ3 

ADP-ribosylation 
factor-like protein 

6-interacting 
protein 4 

5.6 nucleus 
n/n 

(PTHR13595:SF0) 
n/n n/n n/n n/n 

Q9UHX1 
poly(U)-binding-
splicing factor 

PUF60 
5.43 nucleus 

n/n 
(PTHR24011:SF51) 

RNA splicing factor 
activity, transesterification 

mechanism, DNA 
replication origin binding, 

ssDNA binding, 
transcription factor activity, 

poly(A) RNA binding 

cell cycle, DNA 
replication, transcription 
from RNA polymerase II 

promoter, nuclear 
mRNA splicing, via 

spliceosome, mRNA 
polyadenylation, protein 

metabolism, 
ectoderm/nervous 

system development 

transcription factor, 
DNA-binding protein, 

mRNA 
polyadenylation factor, 
mRNA splicing factor, 

ribonucleoprotein 

n/n 

P17480 
nucleolar 

transcription factor 
1 

4.75 
nucleus, 
nucleolus 

SWI/SNF-related 
(PTHR13711:SF13) 

transcription factor activity, 
chromatin/receptor binding 

intracellular signalling 
cascade, regulation of 
transcription from RNA 
polymerase II promoter, 

establishment or 
maintenance of 

chromatin architecture 

HMG box transcription 
factor, signalling 

molecule, 
chromatin/chromatin-

binding protein 

general 
transcriptio
n by RNA 
polymeras
e I->UBF1 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

P22626 

heterogeneous 
nuclear 

ribonucleoproteins 
A2/B1 

4.57 
nucleus, 

nucleoplasm, 
cytoplasm 

n/n 
(PTHR24012:SF14) 

RNA splicing factor 
activity, transesterification 

mechanism, structural 
constituent of ribosome, 

poly(A) RNA binding 

neurological system, cell 
cycle, DNA replication, 
nuclear mRNA splicing, 
via spliceosome, mRNA 
polyadenylation, rRNA 

metabolism, protein 
metabolism, 

ectoderm/nervous 
system development 

mRNA 
polyadenylation factor, 
mRNA splicing factor, 

ribonucleoprotein, 
ribosomal protein 

n/n 

P46087 

putative ribosomal 
RNA 

methyltransferase 
NOP2 

4.46 
nucleus, 
nucleolus 

nucleolar protein NOL1/NOP2 
(yeast) (PTHR22807:SF11) 

methyltransferase activity, 
nucleic acid binding 

rRNA metabolism 
methyltransferase, 
nucleic acid binding 

n/n 

Q9Y383 
putative RNA-
binding protein 

Luc7-like 2 
4.34 

nucleus 
speckle, 
nucleus, 

nucleoplasm 

RNA-binding protein LUC7 
(PTHR12375:SF15) 

n/n n/n n/n n/n 

O14646 
chromodomain-
helicase-DNA-

binding protein 1 
4.11 

nucleus, 
cytoplasm 

Chromodomain-helicase-DNA-
binding protein 1 

(PTHR10799:SF206) 

DNA helicase activity, 
nucleic acid binding 

DNA repair, DNA 
recombination, 
regulation of 

transcription from RNA 
polymerase II promoter, 

establishment or 
maintenance of 

chromatin architecture 

DNA helicase n/n 

Q9UJV9 
probable ATP-

dependent RNA 
helicase DDX41 

4.11 nucleus 
n/n 

(PTHR24031:SF20) 

RNA helicase activity, 
translation factor activity, 

nucleic acid binding 

nucleobase, nucleoside, 
nucleotide/nucleic acid 
metabolism, translation 

RNA helicase n/n 

Q9BUJ2 

heterogeneous 
nuclear 

ribonucleoprotein 
U-like protein 1 

3.91 nucleus 
E1B-55 kDA-associated 

protein 5 (PTHR12381:SF10) 
RNA binding n/n RNA binding protein n/n 

P25440 
bromodomain-

containing protein 
2 

3.89 nucleus 
bromodomain-containing 

protein (PTHR22880:SF18) 

acetyltransferase activity, 
nucleic acid/chromatin 

binding 

transcription from RNA 
polymerase II promoter, 

establishment or 
maintenance of 

chromatin architecture 

acetyltransferase, 
chromatin/chromatin-

binding protein 

n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

Q9NW13 
RNA-binding 

protein 28 
3.81 

nucleus, 
nucleolus 

predicted protein 
(PTHR24012:SF49) 

RNA splicing factor 
activity, transesterification 

mechanism, structural 
constituent of ribosome, 

poly(A) RNA binding 

neurological system, cell 
cycle, DNA replication, 
nuclear mRNA splicing, 
via spliceosome, mRNA 
polyadenylation, rRNA 

metabolism, protein 
metabolism, 

ectoderm/nervous 
system development 

mRNA 
polyadenylation factor, 
mRNA splicing factor, 

ribonucleoprotein, 
ribosomal protein 

n/n 

Q8IYB3 
serine/arginine 
repetitive matrix 

protein 1 
3.31 

nucleus 
matrix, 
nucleus 
speckle 

n/n 
(PTHR23148:SF0) 

mRNA binding mRNA processing 
mRNA processing 

factor 
n/n 

Q9UKJ3 
G patch domain-
containing protein 

8 
3.31 n/n 

n/n 
PTHR17614:SF10) 

n/n n/n n/n n/n 

P18583 protein SON 3.08 
nucleus 
speckle 

n/n 
(PTHR12813:SF2) 

n/n n/n n/n n/n 

Q12906 
interleukin 

enhancer-binding 
factor 3 

2.92 
nucleus, 

nucleolus, 
cytoplasm 

Interleukin enhancer-binding 
factor 3 (PTHR10910:SF34) 

hydrolase activity, 
deaminase activity, 
DNA/mRNA/protein 

binding, kinase 
activator/regulator activity 

spermatogenesis, 
response to IFN-γ, 

neurological system, 
nucleobase, nucleoside, 
nucleotide/nucleic acid 

transport, apoptosis, cell 
cycle, purine base 
metabolism, mRNA 
processing, protein 

metabolism, 
anterior/posterior axis 
specification, response 

to stimulus, RNA 
localisation 

DNA-binding protein, 
mRNA processing 
factor, deaminase, 
kinase activator, 

defense/immunity 
protein 

n/n 

Q9BQG0 
myb-binding 
protein 1A 

2.92 

cytoplasm, 
nucleus, 
shuttles 
between 

nucleus and 
cytoplasm 

DNA polymerase V 
(PTHR13213:SF2) 

DNA-directed DNA 
polymerase activity, 

transcription factor activity 

cell cycle, DNA 
replication, transcription 
from RNA polymerase II 

promoter, mRNA 
transcription 

transcription factor, 
DNA-directed DNA 

polymerase 

n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

O75947 
ATP synthase 

subunit d, 
mitochondrial 

2.8 
mitochondrion 

inner 
membrane 

n/n 
PTHR12700:SF6) 

n/n n/n n/n n/n 

P38159 
RNA-binding motif 

protein, X 
chromosome 

2.78 nucleus 
n/n 

(PTHR24012:SF93) 

RNA splicing factor 
activity, transesterification 

mechanism, structural 
constituent of ribosome, 

poly(A) RNA binding 

neurological system, cell 
cycle, DNA replication, 
nuclear mRNA splicing, 
via spliceosome, mRNA 
polyadenylation, rRNA 

metabolism, protein 
metabolism, 

ectoderm/nervous 
system development 

mRNA 
polyadenylation factor, 
mRNA splicing factor, 

ribonucleoprotein, 
ribosomal protein 

n/n 

Q92499 
ATP-dependent 
RNA helicase 

DDX1 
2.77 

nucleus, 
cytoplasm, 
cytoplasmic 

granule 

n/n 
(PTHR24031:SF61) 

RNA helicase activity, 
translation factor activity, 

nucleic acid binding 

nucleobase, nucleoside, 
nucleotide/nucleic acid 
metabolism, translation 

RNA helicase n/n 

Q9NRR4 ribonuclease 3 2.72 
nucleus, 
nucleolus 

ribonuclease 3 
(PTHR11207:SF0) 

endoribonuclease activity, 
nucleic acid binding 

rRNA metabolism 
endoribonuclease, 

nuclease 
n/n 

P61978 

heterogeneous 
nuclear 

ribonucleoprotein 
K 

2.67 
cytoplasm, 

nucleus 

heterologenous nuclear 
ribonucleoprotein K 
(PTHR10288:SF38) 

RNA splicing factor 
activity, transesterification 

mechanism, mRNA 
binding, protein binding 

neurological system, 
intracellular/nuclear 
protein transport, 

induction of apoptosis, 
signal transduction, 

transcription from RNA 
polymerase II promoter, 
nuclear mRNA splicing, 
via spliceosome, protein 

metabolism 

mRNA splicing factor, 
ribonucleoprotein, 
enzyme modulator 

n/n 

Q9Y3Y2 
chromatin target of 

PRMT1 protein 
2.65 nucleus 

RNA and export factor binding 
protein (PTHR19965:SF8) 

RNA binding 

nucleobase, nucleoside, 
nucleotide/nucleic acid 
transport, transcription 

from RNA polymerase II 
promoter 

RNA binding protein n/n 

Q9Y2W1 

thyroid hormone 
receptor-

associated protein 
3 

2.65 nucleus 
thyroid hormone receptor 

associated protein 3 
(PTHR15268:SF7) 

receptor activity, 
transcription factor activity, 

DNA polymerase 
processivity factor activity 

induction of apoptosis, 
cell cycle, DNA 

replication, regulation 
of/initiation of  

transcription from RNA 
polymerase II promoter 

transcription factor, 
receptor, DNA 

polymerase 
processivity factor 

n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

P17844 
probable ATP-

dependent RNA 
helicase DDX5 

2.63 
nucleus, 
nucleolus 

N/N (PTHR24031:SF0) 
RNA helicase activity, 

translation factor activity, 
nucleic acid binding 

nucleobase, nucleoside, 
nucleotide/nucleic acid 
metabolism, translation 

RNA helicase n/n 

P38919 
eukaryotic 

initiation factor 4A-
III 

2.55 

nucleus, 
nucleus 
speckle, 

cytoplasm 

n/n 
(PTHR24031:SF57) 

RNA helicase activity, 
translation factor activity, 

nucleic acid binding, 
translation initiation factor 

activity 

nucleobase, nucleoside, 
nucleotide/nucleic acid 
metabolism, translation 

RNA helicase, 
translation initiation 

factor, helicase 

n/n 

Q99590 protein SCAF11 2.54 nucleus 
n/n 

(PTHR15242:SF0) 
n/n 

nuclear mRNA splicing, 
via spliceosome 

n/n n/n 

Q08211 
ATP-dependent 
RNA helicase A 

2.53 
nucleus,  

nucleolus, 
cytoplasm 

n/n 
(PTHR18934:SF68) 

RNA helicase activity, 
nucleic acid binding 

nuclear mRNA splicing, 
via spliceosome 

RNA helicase n/n 

P19338 nucleolin 2.5 
nucleus,  

nucleolus, 
cytoplasm 

n/n 
(PTHR24012:SF1) 

RNA splicing factor 
activity, transesterification 

mechanism, structural 
constituent of ribosome, 

poly(A) RNA binding 

neurological system, cell 
cycle, DNA replication, 
nuclear mRNA splicing, 
via spliceosome, mRNA 
polyadenylation, rRNA 

metabolism, protein 
metabolism, 

ectoderm/nervous 
system development 

mRNA 
polyadenylation factor, 
mRNA splicing factor, 

ribonucleoprotein, 
ribosomal protein 

n/n 

Q15393 
splicing factor 3B 

subunit 3 
2.39 nucleus 

splicing factor 3B subunit 3 
(PTHR10644:SF1) 

RNA splicing factor 
activity, transesterification 

mechanism, damaged 
DNA binding, poly(A) RNA 

binding 

DNA repair, nuclear 
mRNA splicing, via 

spliceosome, mRNA 
polyadenylation 

damaged DNA-binding 
protein, mRNA 

polyadenylation factor, 
mRNA splicing factor 

n/n 

O75643 
U5 small nuclear 
ribonucleoprotein 
200 kDa helicase 

2.14 nucleus U520 (PTHR11752:SF7) 

DNA/RNA helicase activity, 
hydrolase activity, RNA 
splicing factor activity, 

transesterification 
mechanism, mRNA 

binding 

meiosis, nuclear mRNA 
splicing, via 
spliceosome 

DNA/RNA helicase, 
mRNA splicing factor, 

hydrolase 

n/n 

Q15029 

116 kDa U5 small 
nuclear 

ribonucleoprotein 
component 

2.07 nucleus 
116 kDA U5 small nuclear 

ribonuclein component 
(PTHR23115:SF5) 

GTPase activity, RNA 
binding, translation factor 

activity, nucleic 
acid/protein binding, 

translation 
initiation/elongation factor 

activity 

mRNA processing, 
translation 

ribonucleoprotein, 
translation 

initiation/elongation 
factor, hydrolase, G-

protein 

n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER 

family/subfamily 
GO molecular 

function 
GO biological 

process 
PANTHER protein 

class 
pathway 

P22087 
rRNA 2'-O-

methyltransferase 
fibrillarin 

1.98 
nucleus, 

nucleolus. 
rRNA 2'-O-methyltransferase 
fibrillarin (PTHR10335:SF0) 

methyltransferase activity rRNA metabolism methyltransferase n/n 

Q9Y3I0 
tRNA-splicing 
ligase RtcB 

homolog 
1.94 cytoplasm 

n/n 
(PTHR11118:SF0) 

n/n n/n n/n 
DNA 

replication-
>RFC 

Q9UHB7 
AF4/FMR2 family 

member 4 
1.86 nucleus 

AF4/FMR2 family member 1 
(PTHR10528:SF6) 

transcription factor activity 

signal transduction, 
regulation of 

transcription from RNA 
polymerase II promoter 

transcription factor n/n 

Q14690 
Protein RRP5 

homolog 
1.82 

nucleus, 
nucleolus 

n/n 
(PTHR23270:SF1) 

n/n n/n n/n n/n 

P12956 
X-ray repair cross-

complementing 
protein 6 

1.77 
nucleus, 

chromosome 
KU P70 DNA helicase 

(PTHR12604:SF2) 
DNA helicase activity, 
nucleic acid binding 

immune system, DNA 
repair/recombination 

DNA helicase n/n 

Q9GZR7 
ATP-dependent 
RNA helicase 

DDX24 
1.76 

cytoplasm, 
nucleolus 

n/n 
(PTHR24031:SF91) 

RNA helicase activity, 
translation factor activity, 

nucleic acid binding 

nucleobase, nucleoside, 
nucleotide/nucleic acid 
metabolism, translation 

RNA helicase n/n 

Q96HR8 

H/ACA 
ribonucleoprotein 
complex non-core 

subunit NAF1 

1.63 

nucleus, 
cytoplasm, 

shuttles 
between 

cytoplasm and 
nucleus 

n/n 
(PTHR31991:SF0) 

n/n n/n n/n n/n 

‘gene ID’ indicates the UniProt database ID; ‘enrichment factor’ indicates the enrichment of the protein in the GFP-YIPF4 sample 

compared to the GFP control sample. n/n = not named; GO = gene ontology 
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Table A. 8 Potential bead proteome of the LFQ experiment. The PANTHER classification system was used to annotate the proteins whereby the information 

about the cellular localisation was derived from the UniProt database.  

gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER family/subfamily GO molecular function GO biological process 

PANTHER protein 
class 

pathway 

P62917 
60S ribosomal 

protein L8 
122.58 cytoplasm 

60S ribosomal protein L8 
(PTHR13691:SF4) 

structural constituent of 
ribosome, nucleic acid 

binding 

fatty acid metabolism, 
translation 

ribosomal protein n/n 

P62424 
60S ribosomal 

protein L7a 
60.71 cytoplasm 

60S ribosomal protein L7A 
(PTHR23105:SF1) 

structural constituent of 
ribosome, nucleic acid 

binding 

rRNA metabolism, 
translation 

ribosomal protein n/n 

Q07020 
60S ribosomal 

protein L18 
57.79 cytoplasm 

60S ribosomal protein L18 
(PTHR10934:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P40429 
60S ribosomal 
protein L13a 

20.01 cytoplasm 
60S ribosomal protein L13A 

(PTHR11545:SF3) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P18621 
60S ribosomal 

protein L17 
18.67 cytoplasm n/n (PTHR11593:SF3) n/n protein metabolism n/n n/n 

P46777 
60S ribosomal 

protein L5 
15.97 

nucleus, 
cytoplasm 

n/n (PTHR23410:SF3) 
structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P46777 
60S ribosomal 

protein L5 
15.97 

cytoplasm, 
nucleus, 
nucleolus 

n/n (PTHR23410:SF3) 
structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P05388 
60S acidic 

ribosomal protein 
P0 

15.28 
nucleus, 

cytoplasm 
n/n (PTHR21141:SF7) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P39023 
60S ribosomal 

protein L3 
14.99 

cytoplasm, 
nucleus, 
nucleolus 

60S ribosomal protein L3 
(PTHR11363:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P39023 
60S ribosomal 

protein L3 
14.99 

cytoplasm, 
nucleus, 
nucleolus 

60S ribosomal protein L3 
(PTHR11363:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

Q02878 
60S ribosomal 

protein L6 
13.3 cytoplasm 

60S ribosomal protein L6 
(PTHR10715:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P62910 
60S ribosomal 

protein L32 
11.7 cytoplasm 

60S ribosomal protein L32 
(PTHR23413:SF1) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 
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gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER family/subfamily GO molecular function GO biological process 

PANTHER protein 
class 

pathway 

P18124 
60S ribosomal 

protein L7 
11.4 cytoplasm n/n (PTHR11524:SF5) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P11142 
heat shock 

cognate 71 kDa 
protein 

8.34 

cytoplasm, 
melanosome, 

nucleus, 
nucleolus 

heat shock protein 70 
(PTHR19375:SF1) 

n/n 

immune system, protein 
folding/complex 

assembly, response to 
stress 

Hsp70 family 
chaperone 

Parkinson 
disease, 
apoptosis 
signalling 

P15880 
40S ribosomal 

protein S2 
6.86 

nucleus, 
cytoplasm 

n/n (PTHR13718:SF17) 
structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P62979 
40S ribosomal 
protein S27a 

6.68 
Ubiquitin: 

cytoplasm, 
nucleus 

ubiquitin (PTHR10666:SF2) 
structural constituent of 
ribosome, nucleic acid 

binding 
proteolysis ribosomal protein n/n 

P62753 
40S ribosomal 

protein S6 
5.91 

cytoplasm, 
nucleolus 

n/n (PTHR11502:SF3) 
structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P61247 
40S ribosomal 

protein S3a 
4.58 

cytoplasm, 
nucleus 

40S ribosomal protein S3A 
(PTHR11830:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P36578 
60S ribosomal 

protein L4 
4.36 

cytoplasm, 
nucleolus 

n/n (PTHR19431:SF0) n/n translation n/n n/n 

P13639 elongation factor 2 4.01 cytoplasm 
translation elongation factor G 

(PTHR23115:SF13) 

GTPase activity, 
translation factor activity, 

nucleic acid/protein 
binding, translation 

initiation/elongation factor 
activity 

translation 

translation 
initiation/elongation 
factor, hydrolase, G-

protein  

n/n 

P62750 
60S ribosomal 
protein L23a 

3.97 
cytoplasm, 

nucleus 
n/n (PTHR11620:SF2) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation 

ribosomal protein, 
nuclease 

n/n 

P62701 
40S ribosomal 
protein S4, X 

isoform 
2.97 cytoplasm n/n (PTHR11581:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P62829 
60S ribosomal 

protein L23 
2.56 

cytoplasm, 
nucleolus 

60S ribosomal protein L23 
(PTHR11761:SF4) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P18077 
60S ribosomal 
protein L35a 

2.34 cytoplasm 
60S ribosomal protein L35A 

(PTHR10902:SF0) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 



 

262 

gene ID gene name 
enrichment 

factor 
cellular 

localisation 
PANTHER family/subfamily GO molecular function GO biological process 

PANTHER protein 
class 

pathway 

P62241 
40S ribosomal 

protein S8 
2.08 cytoplasm 

40S ribosomal protein S8 
(PTHR10394:SF1) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P62249 
40S ribosomal 

protein S16 
1.89 cytoplasm n/n (PTHR21569:SF0) 

structural constituent of 
ribosome, RNA binding 

translation 
ribonucleoprotein, 
ribosomal protein 

n/n 

Q02543 
60S ribosomal 
protein L18a 

1.85 cytoplasm 
60S ribosomal protein L18A 

(PTHR10052:SF1) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

P10809 
60 kDa heat shock 

protein, 
mitochondrial 

1.83 
mitochondrion 

matrix 
chaperonin-60kDa 
(PTHR11353:SF9) 

n/n 
protein folding and 
complex assembly  

chaperonin n/n 

P30050 
60S ribosomal 

protein L12 
1.67 cytoplasm 

60S ribosomal protein L12 
(PTHR11661:SF2) 

structural constituent of 
ribosome, nucleic acid 

binding 
translation ribosomal protein n/n 

‘gene ID’ indicates the UniProt database ID; ‘enrichment factor’ indicates the enrichment of the respective protein in the GFP-YIPF4 

sample compared to the GFP control sample. n/n = not named; GO = gene ontology 
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